# Studies on anomalous triple gauge boson couplings (aTGC) at FCC-he and LHeC 

O. Cakir (AU)
with collaboration A.Senol (AIBU), I.Turk Cakir (GU), H.Denizli (AIBU)

LHeC Higgs \& Top Meeting, July 31, 2017

## Previous works of the study group:

1. Search for anomalous WWY and WWZ couplings with polarised e-beam at the LHeC

Lagrangian:

$$
\begin{aligned}
\mathcal{L}= & i g_{W W \gamma}\left[g_{1}^{\gamma}\left(W_{\mu \nu}^{\dagger} W^{\mu} A^{\nu}-W^{\mu \nu} W_{\mu}^{\dagger} A_{\nu}\right)+\kappa_{\gamma} V_{\mu}^{\dagger} W_{\nu} A^{\mu \nu}\right. \\
& \left.+\frac{\lambda_{\gamma}}{m_{W}^{2}} W_{\rho \mu}^{\dagger} W_{\nu}^{\mu} A^{\nu \rho}\right]+i g_{W W Z}\left[g_{1}^{Z}\left(W_{\mu \nu}^{\dagger} W^{\mu} Z^{\nu}-W^{\mu \nu} W_{\mu}^{\dagger} Z_{\nu}\right)\right. \\
& \left.+\kappa_{Z} W_{\mu}^{\dagger} W_{\nu} Z^{\mu \nu}+\frac{\lambda_{Z}}{m_{W}^{2}} W_{\rho \mu}^{\dagger} W_{\nu}^{\mu} Z^{\nu \rho}\right],
\end{aligned}
$$

## Processes:

$$
e q \rightarrow \nu_{e} \gamma q^{\prime}
$$


$e q \rightarrow \nu_{e} Z q^{\prime}$.

[*] I.T.~Cakir, O.Cakir, A.Senol and A.T.Tasci, Acta Phys.Polon. B45 (2014) no.10, 1947

## Results for $\mathrm{LHeC}\left(\mathrm{E}_{\mathrm{e}}=60 \mathrm{GeV}\right)$ :

Two dimensional $95 \%$ C.L. contour plot of anomalous couplings for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ with polarization $\mathrm{Pe}=-0.8$.



The difference of the upper and lower bounds on the anomalous couplings
$\Delta \chi_{\mathrm{V}}$ and $\lambda_{\mathrm{V}}$ (where $\mathrm{V}=\gamma, \mathrm{Z}$ ) can be written as

The 95\% C.L. current limits on the anomalous couplings and the difference of the upper and lower bounds with Lint $=100 \mathrm{fb}^{-1}$ for polarized and unpolarized electron beam.

| $P_{e}$ | $\Delta \kappa_{\gamma}$ | $\delta \Delta \kappa_{\gamma}$ | $\lambda_{\gamma}$ | $\delta \lambda_{\gamma}$ |
| :---: | :---: | :---: | :---: | :---: |
| -0.8 | $[-0.237,0.771]$ | 1.008 | $[-0.061,0.124]$ | 0.185 |
| 0 | $[-0.257,0.777]$ | 1.034 | $[-0.064,0.128]$ | 0.192 |
| 0.8 | $[-0.356,0.893]$ | 1.249 | $[-0.087,0.153]$ | 0.240 |
| $P_{e}$ | $\Delta \kappa_{Z}$ | $\delta \Delta \kappa_{Z}$ | $\lambda_{Z}$ | $\delta \lambda_{Z}$ |
| -0.8 | $[-0.088,0.405]$ | 0.493 | $[-0.011,0.027]$ | 0.038 |
| 0 | $[-0.104,0.412]$ | 0.516 | $[-0.012,0.028]$ | 0.040 |
| 0.8 | $[-0.147,0.465]$ | 0.612 | $[-0.016,0.032]$ | 0.048 |

The available 95\% C.L. two-parameter bounds on anomalous couplings ( $\Delta \mathrm{k} \gamma$, $\lambda y$ ) and ( $\Delta \kappa Z, \lambda Z$ ) from the ATLAS and CMS experiments. The difference of the upper and lower bounds are shown in the last two columns.

|  | ATLAS [7] | CMS [8] | ATLAS (upper-lower) | CMS (upper-lower) |
| :--- | :---: | :---: | :---: | :---: |
| $\Delta \kappa_{\gamma}$ | $[-0.420,0.480]$ | $[-0.250,0.250]$ | 0.900 | 0.500 |
| $\lambda_{\gamma}$ | $[-0.068,0.062]$ | $[-0.050,0.042]$ | 0.130 | 0.092 |
| $\Delta \kappa_{Z}$ | $[-0.045,0.045]$ | $[-0.160,0.180]$ | 0.090 | 0.340 |
| $\lambda_{Z}$ | $[-0.063,0.063]$ | $[-0.055,0.055]$ | 0.126 | 0.110 |

[7] ATLAS Collaboration, Phys. Rev. D87, 112001 (2013); D87, 112003 (2013).
[8] CMS Collaboration, Eur. Phys. J. C73, 2610 (2013); Phys. Rev. D89, 092005 (2014).

## The recent results from ATLAS＊

| Dataset | Coupling | Expected | Observed |
| :---: | :---: | :---: | :---: |
|  | $\Delta g_{1}^{Z}$ | $[-0.017 ; 0.032]$ | $[-0.016 ; 0.036]$ |
| 13 TeV | $\Delta \kappa_{1}^{Z}$ | $[-0.18 ; 0.24]$ | $[-0.15 ; 0.26]$ |
|  | $\lambda^{Z}$ | $[-0.015 ; 0.014]$ | $[-0.016 ; 0.015]$ |
| 8 and 13 TeV | $\Delta g_{1}^{Z}$ | $[-0.014 ; 0.029]$ | $[-0.015 ; 0.030]$ |
|  | $\Delta \kappa_{1}^{Z}$ | $[-0.15 ; 0.21]$ | $[-0.13 ; 0.24]$ |
|  | $\lambda^{Z}$ | $[-0.013 ; 0.012]$ | $[-0.014 ; 0.013]$ |

Table 3：Expected and observed one－dimensional 95\％CL intervals for the anomalous coupling parameters using $\Lambda_{\mathrm{co}}=\infty$ ．

## The recent results from CMS＊＊

Table 4：Expected and observed limits at 95\％C．L．on single anomalous couplings（other cou－ plings set to zero）．

|  | aTGC | expected limit | observed limit |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 䛼荡 } \\ & \text { 范 } \end{aligned}$ | $\frac{c_{\text {WWW }}}{\Lambda^{2}}\left(\mathrm{TeV}^{-2}\right)$ | ［－8．73，8．70］ | ［－9．46，9．42］ |
|  | $\frac{c_{\text {W }}}{\Lambda^{2}}\left(\mathrm{TeV}^{-2}\right)$ | ［－11．7，11．1］ | ［－12．6 ，12．0］ |
|  | $\frac{c_{B}}{\Lambda^{2}}\left(\mathrm{TeV}^{-2}\right)$ | ［－54．9，53．3］ | ［－56．1，55．4］ |
|  | $\lambda$ | ［－0．036， 0.036$]$ | ［－0．039，0．039］ |
|  | $\Delta g_{1}^{Z}$ | ［－0．066， 0.064$]$ | ［－0．067，0．066］ |
|  | $\Delta \kappa_{Z}$ | ［－0．038，，0．040］ | ［－0．040，，0．041］ |

［＊］S．Hassani［ATLAS Collaboration］，＂Measurement of the $\mathrm{W}^{\wedge}+\mathrm{W} \wedge-->$ ell nu ell nu production cross section at sqrt（s） $=8 \mathrm{TeV}$ and 13 TeV and limits on anomalous triple gauge couplings with the ATLAS detector，＂PoS ICHEP 2016， 670 （2016）．
［＊＊］CMS Collaboration，＂Search for anomalous couplings in semileptonic WW and WZ decays at sqrt（s）＝ 13 TeV ，＂ CMS－PAS－SMP－16－012．

## 2. Probing Anomalous WW $\gamma$ and $W W Z$ Couplings with Polarized Electron Beam at the LHeC and FCC-ep Collider**

## Results for FCC-ep ( $\mathrm{E}_{\mathrm{e}}=80 \mathrm{GeV}$ ):



At the FCC-ep with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (1.101, 0.065) and (0.320, 0.002) for the anomalous ( $\Delta \kappa_{\gamma}, \lambda_{\gamma}$ ) and ( $\Delta \kappa_{z}, \lambda_{z}$ ) couplings, respectively at an integrated luminosity of Lint=100 fb-1.


Two dimensional 95\% C.L contour plot anomalous couplings in the $\lambda_{Y}$ $-\Delta K_{y}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at FCCep with electron beam energy $\mathrm{E}_{\mathrm{e}}=80 \mathrm{GeV}$ with polarization $\mathrm{P}=-0.8$


Two-dimensional 95\% C.L contour plot of anomalous couplings in the $\lambda z$ $-\Delta \mathrm{kz}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at FCC-ep with electron beam energy $\mathrm{Ee}=80 \mathrm{GeV}$ with polarization $\mathrm{P}=-0.8$.

## The Results updated for FCC-ep $\left(\mathrm{E}_{\mathrm{e}}=60 \mathrm{GeV}\right)^{\star *}$ :




## Sensitivities to anomalous couplings $\lambda z \sim 10^{-3}$



Two dimensional 95\% C.L contour plot anomalous couplings in the $\lambda_{Y}$ $-\Delta \kappa_{\gamma}$ plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at FCCep with electron beam energy $E_{e}=60 \mathrm{GeV}$ with polarization $P=-0.8$.


Two-dimensional 95\% C.L contour plot of anomalous couplings in the $\lambda z$ $-\Delta$ kz plane for the integrated luminosity of $10 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}-1$ at FCC-ep with electron beam energy $\mathrm{Ee}=60 \mathrm{GeV}$ with polarization $\mathrm{P}=-0.8$.

## New Study:

## Probing dimension-8 operators for anomalous neutral triple gauge boson interactions at FCC-he and LHeC

## Dimension-6 vertices was studied at ep-collider ${ }^{[1,2]}$ :

$$
\begin{align*}
& i e \Gamma_{Z Z V}^{\alpha \beta \mu}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right)= \frac{-e\left(\mathrm{q}_{3}^{2}-m_{V}^{2}\right)}{M_{Z}^{2}}\left[f_{4}^{V}\left(\mathrm{q}_{3}^{\alpha} g^{\mu \beta}+\mathrm{q}_{3}^{\beta} g^{\mu \alpha}\right)-f_{5}^{V} \epsilon^{\mu \alpha \beta \rho}\left(\mathrm{q}_{1}-\mathrm{q}_{2}\right)_{\rho}\right],  \tag{1.1}\\
& i e \Gamma_{Z \gamma V}^{\alpha \beta \mu}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right)=\frac{-e\left(\mathrm{q}_{3}^{2}-m_{V}^{2}\right)}{M_{Z}^{2}}\left\{h_{1}^{V}\left(\mathrm{q}_{2}^{\mu} g^{\alpha \beta}-\mathrm{q}_{2}^{\alpha} g^{\mu \beta}\right)+\frac{h_{2}^{V}}{M_{Z}^{2}} \mathrm{q}_{3}^{\alpha}\left[\left(\mathrm{q}_{3} \mathrm{q}_{2}\right) g^{\mu \beta}-\mathrm{q}_{2}^{\mu} \mathrm{q}_{3}^{\beta}\right]\right. \\
&-h_{3}^{V} \epsilon^{\mu \alpha \beta \rho} q_{2 \rho}\left.-\frac{h_{4}^{V}}{M_{Z}^{2}} \mathrm{q}_{3}^{\alpha} \epsilon^{\mu \beta \rho \sigma} \mathrm{q}_{3 \rho} q_{2 \sigma}\right\}
\end{align*}
$$

[1] Y.A. Coutinho, A.J. Ramalho, R. Walsh, S. Wulck, Bounds on the ZүZ anomalous couplings from radiative ep scattering at the Very Large Hadron Collider, Phys.Rev. D64 (2001) 115008
the sensitivity can be reached $O\left(10^{-4}\right)$
[2] I.Turk Çakır, Probing anomalous triple gauge boson couplings in gamma p ---> Z b X process, Acta Phys.Polon. B40 (2009) 309-318,

The recent LHC results*
$-3.8 \times 10^{-3}<h_{3}^{Z}<3.7 \times 10^{-3}$
$-3.1 \times 10^{-5}<h_{4}^{Z}<3.0 \times 10^{-5}$
$-4.6 \times 10^{-3}<h_{3}^{\gamma}<4.6 \times 10^{-3}$
$-3.6 \times 10^{-5}<h_{4}^{\gamma}<3.5 \times 10^{-5}$.
[ ${ }^{\star}$ ] The CMS collaboration, Khachatryan, V., Sirunyan, A.M. et al.
J. High Energ. Phys. (2015) 2015: 164.


Dimension-8 operators for anomalous neutral triple gauge boson interactions*

CP-conserving couplings

$$
\begin{aligned}
f_{5}^{Z} & =0 \\
f_{5}^{\gamma} & =\frac{v^{2} M_{Z}^{2}}{4 c_{w} s_{w}} \frac{C_{\widetilde{B} W}}{\Lambda^{4}} \\
h_{3}^{Z} & =\frac{v^{2} M_{Z}^{2}}{4 c_{w} s_{w}} \frac{C_{\widetilde{B} W}}{\Lambda^{4}} \\
h_{4}^{Z} & =0 \\
h_{3}^{\gamma} & =0 \\
h_{4}^{\gamma} & =0
\end{aligned}
$$

## CP-violating

## couplings

$$
\begin{aligned}
& f_{4}^{Z}=\frac{M_{Z}^{2} v^{2}\left(c_{w}{ }^{2} \frac{C_{B B}}{\Lambda^{4}}+2 c_{w} s_{w} \frac{C_{B W}}{\Lambda^{4}}+4 s_{w}^{2} \frac{C_{W W}}{\Lambda^{4}}\right)}{2 c_{w} s_{w}} \\
& f_{4}^{\gamma}=-\frac{M_{Z}^{2} v^{2}\left(-c_{w} s_{w} \frac{C_{B B}}{\Lambda^{4}}+\frac{C_{B W}}{\Lambda^{4}}\left(c_{w}^{2}-s_{w}^{2}\right)+4 c_{w} s_{w} \frac{C_{W W}}{\Lambda^{4}}\right)}{4 c_{w} s_{w}} \\
& h_{1}^{Z}=\frac{M_{Z}^{2} v^{2}\left(-c_{w} s_{w} \frac{C_{B B}}{\Lambda^{4}}+\frac{C_{B W}}{\Lambda^{4}}\left(c_{w}^{2}-s_{w}^{2}\right)+4 c_{w} s_{w} \frac{C_{W W}}{\Lambda^{4}}\right)}{4 c_{w} s_{w}} \\
& h_{2}^{Z}=0 \\
& h_{1}^{Z}=-\frac{M_{Z}^{2} v^{2}\left(s_{w}^{2} \frac{C_{B B}}{\Lambda^{4}}-2 c_{w} s_{w} \frac{C_{B W}}{\Lambda^{4}}+4 c_{w}^{2} \frac{C_{W W}}{\Lambda^{4}}\right)}{4 c_{w} s_{w}} \\
& h_{2}^{\gamma}=0 .
\end{aligned}
$$

[*] A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions Celine Degrande (Illinois U., Urbana). Aug 28, 2013. 17 pp.

95\% CL intervals on EFT parameters at LHC**:

| EFT parameter | Expected 95\% CL $\left[\mathrm{TeV}^{-4}\right]$ | Observed $95 \% \mathrm{CL}\left[\mathrm{TeV}^{-4}\right]$ |
| :--- | :--- | :--- |
| $C_{\tilde{B} W} / \Lambda^{4}$ | $-8.1,8.1$ | $-5.9,5.9$ |
| $C_{W W} / \Lambda^{4}$ | $-4.0,4.0$ | $-3.0,3.0$ |
| $C_{B W} / \Lambda^{4}$ | $-4.4,4.4$ | $-3.3,3.3$ |
| $C_{B B} / \Lambda^{4}$ | $-3.7,3.7$ | $-2.7,2.8$ |




## Our interested Process: $e^{-} q \rightarrow e^{-} \gamma q$



Total cross sections for $e^{-} q \rightarrow e^{-} \gamma q$ process at FCC-he ( $\mathrm{E}_{\mathrm{e}}=60 \mathrm{Gev}$ )

| $C_{\text {है }} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 4.0 | 34.73 |
| 6.0 | 34.74 |
| 8.0 | 34.75 |


| $C_{B W} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 2.0 | 34.73 |
| 4.0 | 34.74 |
| 6.0 | 34.75 |

The cross sections of SM part is 34.60 pb<br>MadGraph 2.4.2 version<br>with nTGC effective theory model

| $C_{W W} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 2.0 | 34.74 |
| 4.0 | 34.77 |
| 6.0 | 34.75 |


| $C_{B B} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 2.0 | 34.70 |
| 4.0 | 34.73 |
| 6.0 | 34.71 |

Total cross sections for $e^{-} q \rightarrow e^{-} \gamma q$ process at $\mathrm{LHeC}\left(\mathrm{E}_{\mathrm{e}}=60 \mathrm{Gev}\right)$

| $C_{\text {है }} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 4.0 | 15.55 |
| 6.0 | 15.55 |
| 8.0 | 15.56 |


| $C_{B W} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 2.0 | 15.53 |
| 4.0 | 15.54 |
| 6.0 | 15.56 |

The cross sections of SM part is 15.52 pb<br>MadGraph 2.4.2 version<br>with nTGC effective theory model

| $C_{W W} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 2.0 | 15.55 |
| 4.0 | 15.54 |
| 6.0 | 15.54 |


| $C_{B B} / \Lambda^{4}\left(\mathrm{TeV}^{-4}\right)$ | $\sigma(p b)$ |
| :---: | :---: |
| 2.0 | 15.54 |
| 4.0 | 15.54 |
| 6.0 | 15.55 |

Next Steps:

1. Kinematic distributions of electron, photon and jet
2. Signal and background cross section dependence on electron energy.
3. Study for polarisation effect.
4. Signal and background simulation.
5. Comparison the result with current limits
