Studies on anomalous triple gauge boson couplings (aTGC) at FCC-he and LHeC

O. Cakir (AU)

with collaboration A.Senol (AIBU), I.Turk Cakir (GU), H.Denizli (AIBU)

LHeC Higgs & Top Meeting, July 31, 2017

Results for LHeC ($E_e=60$ GeV):

Two dimensional 95% C.L. contour plot of anomalous couplings for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ with polarization $P_e = -0.8$.

The difference of the upper and lower bounds on the anomalous couplings

The 95% C.L. current limits on the anomalous couplings and the difference of the upper and lower bounds with $Lint = 100 \text{ fb}^{-1}$ for polarized and unpolarized electron beam.

$\Delta \kappa_{\gamma}$	$\delta\Delta\kappa_{\gamma}$	λ_γ	$\delta\lambda_\gamma$
[-0.237, 0.771]	1.008	[-0.061, 0.124]	0.185
[-0.257, 0.777]	1.034	[-0.064, 0.128]	0.192
[-0.356, 0.893]	1.249	[-0.087, 0.153]	0.240
$\Delta \kappa_Z$	$\delta\Delta\kappa_Z$	λ_Z	$\delta\lambda_Z$
[-0.088, 0.405]	0.493	[-0.011, 0.027]	0.038
[-0.104, 0.412]	0.516	[-0.012, 0.028]	0.040
[-0.147, 0.465]		[-0.016, 0.032]	0.048
	$\begin{bmatrix} -0.237, 0.771 \\ [-0.257, 0.777] \\ [-0.356, 0.893] \end{bmatrix}$ $\Delta \kappa_Z$ $\begin{bmatrix} -0.088, 0.405 \end{bmatrix}$	$\begin{bmatrix} -0.237, 0.771 \end{bmatrix} & 1.008 \\ \begin{bmatrix} -0.257, 0.777 \end{bmatrix} & 1.034 \\ \begin{bmatrix} -0.356, 0.893 \end{bmatrix} & 1.249 \\ \hline \Delta \kappa_Z & \delta \Delta \kappa_Z \\ \begin{bmatrix} -0.088, 0.405 \end{bmatrix} & 0.493 \end{bmatrix}$	$ \begin{bmatrix} -0.237, 0.771 \end{bmatrix} 1.008 \begin{bmatrix} -0.061, 0.124 \end{bmatrix} \\ \begin{bmatrix} -0.257, 0.777 \end{bmatrix} 1.034 \begin{bmatrix} -0.064, 0.128 \end{bmatrix} \\ \begin{bmatrix} -0.356, 0.893 \end{bmatrix} 1.249 \begin{bmatrix} -0.087, 0.153 \end{bmatrix} \\ \hline \Delta \kappa_Z \qquad \delta \Delta \kappa_Z \qquad \lambda_Z \\ \begin{bmatrix} -0.088, 0.405 \end{bmatrix} 0.493 \begin{bmatrix} -0.011, 0.027 \end{bmatrix} $

The available 95% C.L. two-parameter bounds on anomalous couplings ($\Delta \kappa \gamma$, $\lambda \gamma$) and ($\Delta \kappa Z$, λZ) from the ATLAS and CMS experiments. The difference of the upper and lower bounds are shown in the last two columns.

	ATLAS [7]	CMS [8]	ATLAS (upper-lower)	CMS (upper–lower)
$\Delta \kappa_{\gamma}$	[-0.420, 0.480]	[-0.250, 0.250]	0.900	0.500
λ_γ	$\begin{bmatrix} -0.420, 0.480 \\ [-0.068, 0.062] \\ [-0.045, 0.045] \end{bmatrix}$	[-0.050, 0.042]	0.130	0.092
$\Delta \kappa_Z$	[-0.045, 0.045]	[-0.160, 0.180]	0.090	0.340
λ_Z	[-0.063, 0.063]	[-0.055, 0.055]	0.126	0.110

[7] ATLAS Collaboration, Phys. Rev. D87, 112001 (2013); D87, 112003 (2013).

[8] CMS Collaboration, Eur. Phys. J. C73, 2610 (2013); Phys. Rev. D89, 092005 (2014).

The recent results from ATLAS*

Dataset	Coupling	Expected	Observed
13 TeV	$\Delta g_1^Z \ \Delta \kappa_1^Z \ \lambda^Z$	[-0.017; 0.032] [-0.18; 0.24] [-0.015; 0.014]	[-0.016; 0.036] [-0.15; 0.26] [-0.016; 0.015]
8 and 13 TeV	$\Delta g_1^Z \ \Delta \kappa_1^Z \ \lambda^Z$	[-0.014; 0.029] [-0.15; 0.21] [-0.013; 0.012]	[-0.015; 0.030] [-0.13; 0.24] [-0.014; 0.013]

Table 3: Expected and observed one-dimensional 95% CL intervals for the anomalous coupling parameters using $\Lambda_{co} = \infty$.

The recent results from CMS**

-0.05

0

0.05

Table 4: Expected and observed limits at 95% C.L. on single anomalous couplings (other couplings set to zero).

0.1

0.15

0.2

0.25

2. Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-ep Collider**

Two dimensional 95% C.L contour plot anomalous couplings in the λ_{γ} – $\Delta\kappa_{\gamma}$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at FCC-ep with electron beam energy E_e =80 GeV with polarization P =–0.8 .

Two-dimensional 95% C.L contour plot of anomalous couplings in the λ_Z – $\Delta\kappa_Z$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at FCC-ep with electron beam energy Ee=80 GeV with polarization P=-0.8.

The Results updated for FCC-ep (Ee=60 GeV)**:

Sensitivities to anomalous couplings $\lambda_Z \sim 10^{-3}$

Two dimensional 95% C.L contour plot anomalous couplings in the λ_{γ} – $\Delta\kappa_{\gamma}$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at FCC- ep with electron beam energy E_e =60 GeV with polarization P =–0.8 .

Two-dimensional 95% C.L contour plot of anomalous couplings in the λ_Z – $\Delta \kappa_Z$ plane for the integrated luminosity of 10 fb⁻¹ and 100 fb⁻¹ at FCC-ep with electron beam energy Ee=60 GeV with polarization P=-0.8.

New Study:

Probing dimension-8 operators for anomalous neutral triple gauge boson interactions at FCC-he and LHeC

Dimension-6 vertices was studied at ep-collider^[1,2]:

$$ie\Gamma_{ZZV}^{\alpha\beta\mu}(\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3}) = \frac{-e(\mathbf{q}_{3}^{2}-m_{V}^{2})}{M_{Z}^{2}} \left[f_{4}^{V}(\mathbf{q}_{3}^{\alpha}g^{\mu\beta}+\mathbf{q}_{3}^{\beta}g^{\mu\alpha}) - f_{5}^{V}\epsilon^{\mu\alpha\beta\rho}(\mathbf{q}_{1}-\mathbf{q}_{2})_{\rho} \right], \quad (1.1)$$

$$ie\Gamma_{Z\gamma V}^{\alpha\beta\mu}(\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3}) = \frac{-e(\mathbf{q}_{3}^{2}-m_{V}^{2})}{M_{Z}^{2}} \left\{ h_{1}^{V}(\mathbf{q}_{2}^{\mu}g^{\alpha\beta}-\mathbf{q}_{2}^{\alpha}g^{\mu\beta}) + \frac{h_{2}^{V}}{M_{Z}^{2}}\mathbf{q}_{3}^{\alpha}[(\mathbf{q}_{3}\mathbf{q}_{2})g^{\mu\beta}-\mathbf{q}_{2}^{\mu}\mathbf{q}_{3}^{\beta}] \qquad Z_{\mu} \underbrace{\downarrow}_{p_{1}} \underbrace{\downarrow}_{p_{2}} \int_{p_{2}} \int_{p_{2}} \int_{p_{2}} \int_{p_{2}} \int_{p_{2}} \int_{p_{3}} \int_{p_$$

[1] Y.A. Coutinho, A.J. Ramalho, R. Walsh, S. Wulck, Bounds on the $Z\gamma Z$ anomalous couplings from radiative ep scattering at the Very Large Hadron Collider, Phys.Rev. D64 (2001) 115008

the sensitivity can be reached O(10-4)

 [2] I.Turk Çakır, Probing anomalous triple gauge boson couplings in gamma p ---> Z b X process, Acta Phys.Polon. B40 (2009) 309-318,

Dimension-8 operators for anomalous neutral triple gauge boson interactions*

[*] A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions Celine Degrande (Illinois U., Urbana). Aug 28, 2013. 17 pp.

Our interested Process: $e^-q \rightarrow e^-\gamma q$

Total cross sections for $e^-q \rightarrow e^-\gamma q$ process at FCC-he (E_e=60 Gev)

$C_{\tilde{B}W}/\Lambda^4(TeV^{-4})$	$\sigma(pb)$
4.0	34.73
6.0	34.74
8.0	34.75

$C_{BW}/\Lambda^4(TeV^{-4})$	$\sigma(pb)$
2.0	34.73
4.0	34.74
6.0	34.75

$C_{WW}/\Lambda^4 (TeV^{-4})$	$\sigma(pb)$
2.0	34.74
4.0	34.77
6.0	34.75

$C_{BB}/\Lambda^4 (TeV^{-4})$	$\sigma(pb)$
2.0	34.70
4.0	34.73
6.0	34.71

The cross sections of SM part is 34.60 pb

MadGraph 2.4.2 version

with nTGC effective theory model

Total cross sections for $e^-q \rightarrow e^-\gamma q$ process at LHeC (E_e=60 Gev)

$C_{\tilde{B}W}/\Lambda^4(TeV^{-4})$	$\sigma(pb)$
4.0	15.55
6.0	15.55
8.0	15.56

$C_{_{BW}}/\Lambda^4(TeV^{-4})$	$\sigma(pb)$
2.0	15.53
4.0	15.54
6.0	15.56

$C_{WW}/\Lambda^4 (TeV^{-4})$	$\sigma(pb)$
2.0	15.55
4.0	15.54
6.0	15.54

$C_{BB}/\Lambda^4 (TeV^{-4})$	$\sigma(pb)$
2.0	15.54
4.0	15.54
6.0	15.55

The cross sections of SM part is 15.52 pb

MadGraph 2.4.2 version

with nTGC effective theory model

Next Steps:

- 1. Kinematic distributions of electron, photon and jet
- 2. Signal and background cross section dependence on electron energy.
- 3. Study for polarisation effect.
- 4. Signal and background simulation.
- 5. Comparison the result with current limits