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* CCSNe are one of the brightest astrophysical
phenomena in the modern universe.

* They are an important site for nucleosynthesis and
the mechanism for unbinding elemental products
of stellar evolution and spreading them
throughout the galaxy. They help trigger star
formation, and are the source both neutron stars
and black holes.

* Central engine provides an unigue and fantastic
laboratory for studying high density/temperature
and neutron rich conditions. Requires us being
able to observe central engine -> Neutrinos!




Collapse Phase

* Most massive stars core collapse during the
red supergiant phase

* CCSNe are triggered by the collapse of the iron
core (~1000km, or 1/10° of the star’s radius)

* Collapse ensues because electron degeneracy
pressure can no longer support the core
against gravity
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* Emission of neutrinos deleptonizes the core and accelerates collapse
* The emission ultimately sets the final Ye of the core and therefore its ma
at bounce
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ronization Burst

en the matter reaches nuclear
ensity and the supernova shock
rms, it liberates the nucleons
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Accretion Phase: Role of Neutrinos

After the burst, v, and anti-v, emission is powered by accretion
Infalling matter is shock heated and then is cooled via neutrino emission

N
Ve e Charged current processes dominant production
 Thermal production processes dominate at high
P densities where neutrinos are trapped for seconds 4
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‘tion Phase
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e accretion phase introduces first progenitor dependence of luminosities
High ‘compactness’: higher mass accretion -> more binding energy released -
higher luminosities

Detection will reveal progenitor properties and constrain stellar evolution
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retion Phase
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Accretion Phase

* Many groups consistently predict
successful explosions in 2D
simulations of core-collapse
supernovae, 3D are harder, but
promising

Points:

* Prior to explosion, similar to 1D

* After explosion luminosity drops

* Hydrodynamic instabilities present

O’Connor & Couch (2015)
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Accretion Phase - SASI * SASI — Standing/Stationary
Accretion Shock Instability

Time=0.251 s

Couch & O’Connor (2014)
200 km




tion Phase - SASI

Convection and SASI impact
signal at lower order, can
even be coherent/periodic,
but do not systematically
shift luminosity/energy

Observable in HyperK and
IceCube, perhaps not Dune.
Timescales too short: ~10ms

Tamborra et al. (

2013); Miriz
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Accretion Phase - LESA

Tamborra et al. (2014)
Luminosity

Lepton number Emission Self-
sustained Asymmetry - LESA

Discovered in 3D simulations
e Develops within 150ms of bounce
* Creates a dipole in lepton number
e Results in observer-angle
dependent luminosity variations ~
20%

Stills need confirmation

Measurements of both neutrino and
antineutrino luminosities important
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Horowitz et al. (2016) Epost-bounce ()

See Shirley Lee’s talk on Friday

How the protoneutron
cools relays info about the
EOS -> traced by neutrino
emission

Variations in neutrino
luminosities and energies
can be detectable and help
constrain the nuclear EOS

Particularly, differences in
the <E> between v, and
important and can imp
nucleosynthesis



os from other Supernovae Wrightetal. (20

* All other supernovae are ‘thermonuclear’ energy comes from
runaway burning of carbon & oxygen

* Do not get to nuclear densities and therefore not as hot and not
nearly the same number of neutrinos

Pair-Instability Supernovae
Type la — unknown mechanism



T NMO 250M,

- 0.1+Hyper-K Helm

Super-K Helm
DUNE Helm

JUNO Helm
--- 0.1*Hyper-K SFHo

Super-K SFHo
DUNE SFHo

--= JUNO SFHo

-20 -15 -10

-5
t(s)

Hyper-K: 50 NH (40 IH)
events for massive
(250M_,.) PISN at 10kpc

sun

Caveat: Very Low E
requires low thre
10 2MeV -> 50% e




from other Supernovae wrightetal. (2

Type la — unknown mechanism: B
DDT or GCD

DDT: Deflagration to
Detonation Transition
GCD: Gravitational
Confined Detonation

DDT: 10s of events in
Hyper-K at 1kpc

e GCD: few events in

""" Hyper-K at 1kpc
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Summary

* Neutrinos enable us to study the central engine of core-
collapse supernovae like no other probe can.

e Since they help drive the evolution of the central engine,
neutrinos can relay information on the structure, dynamics,

nuclear physics.

e Each species carries important and complementary info so
we need to measure them all!






