

The University of Manchester

R&D for the Short-Baseline Near Detector (SBND) at FNAL

Jo Pater The University of Manchester (UK) On behalf of the SBND Collaboration NNN17 – Warwick, UK – 26-28 October 2017

The SBND Collaboration

190 collaborators from 35 institutes in 4 countries

Fermilab's Short-Baseline Neutrino Programme

Booster Neutrino Beam

 5×10^{12} protons/spill, max spill rate 5 Hz

Three detectors (liquid-argon TPCs):

distance from target (m) TPC active volume (tons)

SBND	110	112
MicroBooNE	470	80
Icarus T600	600	600

SBND's Experimental Programme

- Physics goals:
 - measure un-oscillated v content of BNB to enable oscillation measurements as near detector
 - \rightarrow sterile ν search
 - study ν –nucleus interactions in argon
 - detection of supernova ν , dark matter searches, etc.
- Prototype for long-baseline programme (DUNE)

The SBND Detector

Main components:

- Liquid Argon Time Projection Chamber
 - 112-ton (active volume)
 - Cold and warm readout electronics
 - Light Detection System
- Cryostat
 - stainless-steel membrane, passive foam insulation
 - TPC is supported from cryostat lid
- Cosmic Ray Tagger
 - background rejection
 - scintillating bars + SiPMs
 - ~4π coverage

SBND TPC Design

- Central cathode plane
- Anode planes at sides
- Dimensions:
 - 5m long (beam direction)
 - 4m wide, 4m high
- Surrounded by field cage
 - roll-formed stainless steel profiles (lower drawing)
 - drift field 500 V/cm

Anode Plane Assemblies

- Two linked frames at each side of TPC
 - $-2.5 \times 4.0 \text{ m}^2$ each frame
 - Stainless steel rectangular hollow section, welded
 - precision-drilled fixation holes
 - flatness (±0.5mm) achieved with shimmed levelling plates.
 - Laser survey determines required shim thicknesses.
- 3 of 4 frames delivered to wiring sites

J.Pater - R&D for SBND at FNAL

Anode Wires

3 wire planes:

- vertical, ±60°
 - 832 + 1568 + 1568 wires per frame
- 150µm diameter Cu-Be wire
 - ~same CTE as stainless steel
- soldered and epoxied to PCBs (G10) fixed to APA
 - 3mm wire pitch
 - 3mm wire plane spacing
- angled wires are jumpered between adjacent frames
 - → continuous readout across width of the anode plane
- read out at top and sides

APA Wiring Techniques

Two techniques being trialled - both could be scaled to any size frame.

NNN17 - 26-28 October 2017

semi-automated wiring head travels on beam above frame

 \rightarrow automatic wire positioning, tensioning

Multi-wire "shuttle"

up to 50 wires tensioned and positioned at once

APA Wiring Status

Both wiring stations are operational on small test frames (~1/4 size).

Wire-by-wire robot

NNN17 - 26-28 October 2017

APA Wiring Status, cont'd

Multi-wire shuttle

Wiring of full-size frames to being very soon.

Wire Quality Control

- All QC is per-wire and performed before the next layer of wires is added:
 - electrical continuity
 - electrical isolation from nearest neighbors and frame
 - acceptably low bias current
 - tension: checked by measuring fundamental oscillation frequency of wire: f α \sqrt{T}
- Repeat (some of) the above
 - after a cold cycle
 - after transport

APA Cold Testing

- Finished APAs will be cooled to ~100 K to verify that wires are robust:
 - no breakages
 - no significant change in electrical performance
 - no significant change in wire tension
- cool-down rate is important
 - 50-60 K/hour
 - lets frame (larger thermal mass) shrinkage 'catch up' with wires
 - avoid condensation on warmup

J.Pater - R&D for SBND at FNAL

APA Cold Testing, cont'd

Preparing for cold test early October 2017 Partially-wired test frame and full-size (unwired) frame

Cathode Plane

- Made of 2 rectangular frames:
 - welded tubular steel construction
 - electropolished no sharp edges
 - each frame holds 8 wire-mesh panels
 - held at -100 kV
- HV feedthrough at top
- Construction nearing completion

Light Detection System

- Scintillation light:
 - trigger, t₀
 - background rejection
 - calorimetry, particle ID
- Mounted on anode planes:
 - PhotoMultiplier Tubes
 - Scintillating bars read out with SiPMs
 - both PMTs and bars are coated with wavelength shifter (WLS)

- Possible additions (currently in R&D phase):
 - WLS-coated reflector foils on cathode plane could improve performance
 - photon trapping boxes on anode plane to boost efficiency \checkmark 16

Readout Electronics

- Front-end:
 - FE ASIC: amplification, shaping
 - ADC
 - Multiplexing
 - On anode planes cold!
 Careful testing needed at temperature.
- Feed-through → warm interface on top of cryostat
- Readout and trigger in surface building

J.Pater - R&D for SBND at FNAL

Synergies SBND-DUNE

- Same:
 - cryostat technology
 - TPC construction and support concepts
 - APA wire bonding design (stacked PC boards)
 - CPA design concept
 - Front-end electronics

- Similar:
 - APA frame design
 - APA wiring concept
 - field cage design
- Test-bed for future light detection system elements

Schedule / Summary

Anne Schukraft, June 2017

On schedule for installation in 2018, commissioning in 2019

Backup slides

J.Pater - R&D for SBND at FNAL

NNN17 - 26-28 October 2017

20

How a TPC Works

Tension Measurement

Wire tension is checked by measuring fundamental oscillation frequency of wire (f $\alpha \sqrt{T}$). 2 methods:

- laser / photodiode / spectrum analysis
 - wire by wire, topmost layer only
- purely electrical method
 - faster (measure many wires at once)
 - works on lower layers (connection through wiring PCBs)
 - compatibility with electronics being investigated
 - not compatible with short (corner) wires

Reflection of laser on the wire is a forward cone. Signal is caught by off-axis photodiode

