

MOWascko <<u>m.wascko@imperial.ac.uk</u>> Imperial College London

Outline

- Introduction to HPTPC
 - Physics motivation and initial studies
- 1m3 HPTPC prototype work
 - Hardware overview & status
 - Preparation for CERN beam tests
- Fermilab HPTPC R&D using ALICE TPC modules
- Conclusion

HPTPC overview

- Neutrino detector wish list:
 - $\mathbf{M} \sim 4\pi$ coverage
 - **Magnetisation**
 - **☑**3D reconstruction
 - **Excellent** PID
 - Nuclear target flexibility
 - Low momentum particle detection threshold
 - Technology synergy with VETO other areas/fields
- →HPTPC has it all!

Morgan O

Wascko

Imperial College London 2017/10/26

HPTPC Event rates

CC-inclusive interactions per 10²¹ POT

Gas	mass, 10 m ³ at 10 bar	J-PARC (0.6 GeV)	FNAL (2-3 GeV)	
He	16.4 kg	1.10E+03	3.76E+04	
CH ₄	65.6 kg	4.39E+03	1.50E+05	
Ne	82.8 kg	5.50E+04	1.88E+05	
Ar	163.8 kg	1.09E+04	3.76E+05	
CF ₄	362. kg	2.42E+04	8.28E+05	
CO ₂ :N ₂	174. kg	1.17E+04	3.99E+05	

(These J-PARC and FNAL numbers were calculated in a consistent manner.)

Complementary approaches

~belt & braces~

Morgan O

Wascko

Proton multiplicity studies G. Sanjana

2017/10/26

NNN17, Warwick, UK

Wascko 6

Neutrino Energy Reconstruction

Generator-level studies of neutrino energy bias (kinematic recon)

2017/10/26

Improved Analysis Techniques

Morgan O

Wascko

1m3 HPTPC R&D

Imperial College

London 2017 / 10 / 26

NNN17, Warwick, UK

Morgan O. Wascko

NNN17, Warwick, UK

TPC with "short stack" Field Cage

- Commissioning TPC & readout in low pressure vessel
 - 1.2m diameter, 30–60 cm length
- charge and optical readout of anode and ground segments

amplification plane + short stack field cage

cathode plane with delrin support structure.

supports slide on rails welded to vessel, as in HPTPC vessel

Morgan O

Wascko

Imperial College London 2017 / 10 / 26

Readout commissioning

M. Ward

- good baseline stability, with RMS of whole readout chain consistent with digitizer-only noise rms of <1 ADC (=0.5 mV).
 - top: anode preamplifiers, bottom: ground mesh fast amplifiers
- Initial measured gas gain ~3.2x10⁴

Tracking Calibration

M. Ward

- example 25 MeV/c alpha tracks in CCD readout
- Currently testing TREx reconstruction on HPTPC simulation; preparing for calibration data

High Pressure Vessel

- Rated to 7.5 atm,
- 1 beam window (2 mm Al), 6 optical ports + 12 flanges for gas, HV, controls, calibration, etc.

Pressure vessel arrived at RHUL yesterday!

3D design rendering

Vessel on crane at RHUL

Vessel in clean tent at RHUL

Morgan O

Wascko

CERN beamtest

• Goals:

1.Make new proton-nucleus (and pion-nucleus) scattering measurements

2. Tune neutrino interaction generators, demonstrate feasibility of <2% systematics

- Neutrino generators disagree in recoil particle multiplicity & kinematics (Fig 1)
- Low energy final state protons are created at higher energy, lose energy exiting nucleus (Fig 2)
- Need new data for tuning generator MC hadron scattering models (Fig 3)
- Preparing proposal to SPSC for beam time before long shutdown

Beam Time Proposal to CERN SPSC

- CERN-SPSC-2017-030 ; SPSC-P-355
- Interest from Upgrade EOI groups + more (55+ authors, 34 groups, 11 countries)
- Request: 4 weeks beam time + 2 weeks parasitic running
- Feedback from SPSC referees expected Nov. 2017

T9/T10 flux measurements

Yu. Shitov

Morgan O.

Wascko

17

Proposal Fig. 7

http://cds.cern.ch/record/2284748

Imperial College

London 2017 / 10 / 26

Test beam studies

- TPC entrance surface 0.5 x 1 m2, optimal beam 0.8 GeV & 30 cm of Plastic (PS) absorber (+ 1cm of steel from vessel). We don't have simulation of PS + Steel, so use simulation of pure 35 cm of PS, which should be close to 30 cm PS + 1 cm of Steel.
- 2) Optimal location is 1 m at 13 m from absorber .

Aim of this study

Looking for: 1) spatial, 2) momentum, 3) 1 + 1 2D distros vs. different particles normalized: a) per single incoming beam particle, b) per spill – spill data info has been taken from test measurements.

Try moving detector off-axis to enhance proton fraction

NNN17, Warwick, UK

London 2017 / 10 / 26

T9/T10 flux measurements

Yu. Shitov

(a) Effect of using different moderator materials.

Absorber studies: π&p from 1 GeV T10 beam in TPC in 13 m from absorber

Absorber studies: n&p from 1 GeV T10 beam in TPC in 13 m from absorber

(b) Effect of beam momentum and moderator thickness.

Proposal Fig. 9

http://cds.cern.ch/record/2284748

Morgan O.

Wascko

19

Imperial College London 2017 / 10 / 26

Particle tracks in HPTPC (MC)

Z. Chen-Wishart

Proposal Fig. 14

http://cds.cern.ch/record/2284748

Morgan O

Wascko 20

Imperial College London 2017 / 10 / 26

Proton/pion separation in HPTPC (MC)

Γιοροδάι Γι

http://cds.cern.ch/record/2284748

Morgan O

Wascko

21

Imperial College London 2017 / 10 / 26

Proton reconstruction in HPTPC (MC)

P. Denner

Proposal Fig. 17

http://cds.cern.ch/record/2284748

Morgan O

Wascko

22

Imperial College London 2017 / 10 / 26

HPTPC mock data analysis

D. Brailsford

Proposal Fig. 18

http://cds.cern.ch/record/2284748

Morgan O

Wascko 23

Imperial College London 2017 / 10 / 26

Fermilab HPTPC R&D

Morgan O.

Wascko

24

High Pressure GArTPC R&D at Fermilab

- DUNE Near Detector design options are under study now
 - LArTPC + downstream magnetized Outer readout fine-grained tracker (e.g., HP-GArTPC) chambers
- Attractive possibility for HP-GArTPC:
 recycle ALICE TPC readout chambers
 - ALICE chambers will be replaced during upcoming upgrade
 - Demonstrated excellent reconstruction capabilities in high-rate environment
 - Will provide excellent vertex visualization for neutrino interactions
 - Raw 3D data (pad plane readout)
 - Readout area ~32 m², ~557k channels
 - ALICE operation was at 1 atm

25

2017 October 26

 Need to demonstrate capability at 10 atm for use in DUNE ND complex

ALICE TPC

🚰 Fermilab

ALICE Inner Readout Chamber (IROC) @ Fermilab

J.L. Raaf

Operating Principle

Characterization of a fully equipped ALICE TPC Readout Chamber, M.L. Knichel

27 2017 October 26 NNN 2017

J.L. Raaf

‡ Fermilab

Fermilab High Pressure GArTPC Test Bench

- Active volume ~0.025 m³ (25L)
- System designed for both 1 atm and 10 atm tests
- Will use LArIAT DAQ for pad readout
 - Verify TPC performance: gain, stability, uniformity
 - Operation in Fermilab charged particle test beam
 - Particle ID & reconstruction
 - Pile-up studies

J.L. Raaf

Status and Future Plans

- Readout chamber and field cage constructed
- Preparing interface from IROC to LArIAT DAQ
- Gas system under construction
 - Test at 1 atm by the end of the year
 - 90:10 Ar:CO₂ and/or Ar:CH₄ to start
 - Test other gas mixtures, e.g. Xe-doped Ar
 - Tests at higher pressure after successful completion of 1 atm
- Future
 - Operation in charged particle test beam
 - Larger vessel and readout chambers (~1 m³) in NuMI neutrino beam

Summary

- An HPTPC neutrino detector will open a new window into dynamics of neutrino-nucleus scattering
 - Complementary to Ar-only measurements of LArTPCs & off-axis techniques of E61
- Building 1m3 prototype for HPTPC R&D in UK
 - Measure hadronic scattering on Ar (at least)
 ✓ TPC & readout working, pressure vessel delivered
 ✓ Baseline reconstruction & analysis working
 - Will become a test bench for further collaborative R&D efforts
- Separate FNAL HPTPC R&D programme ongoing
- Proposal for beam test run submitted to CERN SPSC
- Working toward international collaboration to develop (and build) HPTPC *neutrino* detector

Morgan C

Thank you for your attention!

ご清聴ありがとうございました

水戸の梅の花

Motivation: xsec systematics

- 2016 T2K OA xsec systematics at 6-7% level
 - this table does not include biases from 2p2h effects
- CPV sensitivity improved dramatically with ~2% overall systematics
- Systematics driven by discrepancies between interaction models and data
 - What will we find with newer/ better data??

To get better models in generators, need better data for tuning models

T2K 2016 systematic error table

	$\delta_{N_{SK}}/N_{SK}$ (%)				
	1-Ring μ		1-Ring e		
Error Type	ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	$\nu/\bar{\nu}$
SK Detector	3.9	3.3	2.5	3.1	1.6
SK Final State & Secondary Interactions	1.5	2.1	2.5	2.5	3.5
ND280 Constrained Flux & Cross-section	2.8	3.3	3.0	3.3	2.2
$\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}$	0.0	0.0	2.6	1.5	3.1
NC 1γ Cross-section	0.0	0.0	1.5	3.0	1.5
NC Other Cross-section	0.8	0.8	0.2	0.3	0.2
Total Systematic Error	5.1	5.2	5.5	6.8	5.9
External Constraint on θ_{12} , θ_{13} , Δm_{21}^2	0.0	0.0	4.1	4.0	0.8

Imperial College London 2017 / 10 / 26

Wascko

Cross-section systematics

- ν_{μ} CCQE data show low/high E_{ν} discrepancies
 - MiniBooNE/SciBooNE & NOMAD
- Explanation: multinucleon scattering—not simulated by neutrino interaction generator MCs
- Not included in MINOS, MiniBooNE, early T2K, early NOvA publications
- Misidentified events are not reconstructed correctly—results in biased E
- Even very small effects can become important when you are driving toward 2% total errors!

Growing Consensus in *v*-interaction community

- We need broad coverage
 - Model independent measurements spanning full phase space (4π) and many nuclei
- Need sufficiently low energy thresholds for recoil nucleons to separate 1p1h from 2p2h events
- Gas TPC provides unique opportunities to address issues

1m3 prototype overview

- Will use 1m3 prototype for future collaborative work work
- 1m3 is appropriate size for construction of full neutrino detector
 - 1m2 readout area
 - 1m drift length
- baseline: CCD readout
 - UK area of expertise
 - very cost effective
- extendable—we can add:
 - other optical readouts
 - different amplification devices
 - direct charge readout

Morgan O

T9/T10 flux measurements

Yu. Shitov

(a) Upstream TOF station in T9.

(b) Example of TOF spectra accumulated during a single run.

Proposal Fig. 4

What might an HPTPC neutrino detector look like?

Hybrid optical readout

- Can tracking be established with only optical readout?
- Build hybrid system of high spatial resolution CCD with fast timing optical system (e.g. MCP-PMT) to reconstruct tracks in the third (drift) dimension
 - High-res, slow CCD readout as described previously
 - Combine with low-res, FAST MCP-PMT (or MPPCs)

2017/10/26