

Upgrade of the near detectors towards CP violation search in T2K/T2K-II

Benjamin Quilain (Kavli IPMU, The University of Tokyo) on behalf of the ND280-upgrade taskforce and WAGASCI collaboration

Outline:

- 1. Introduction to T2K.
- 2. Upgrade of the off-axis near detector, ND280.
- 3. A new water-based detector: WAGASCI

NNN17 conference, 2017/10/26

I-Introduction to T2K

• Observation of $\nu_{_{e}}$ appearance in a $\nu_{_{\mu}}$ beam and $\nu_{_{\mu}}$ disappearance & $\bar{\nu}$ equivalents.

• <u>Off-axis experiment</u>: neutrino beam aimed at 2.5° from Super-K to maximize the oscillation at 295 km → Tune energy spectrum (600 MeV)

• Near detector complex needed to constraint beam shape & rate before oscillation

UA1 Magnet Yoke

Benjamin Quilain

Complementary near detectors

ND280

Off-axis near detector: ND280

- Constraints on v_{μ} spectrum (CC0 π , CC1 π , CCOthers)
 - Measure v_{e} beam contamination
 - Measure cross sections

• <u>Off-axis angle</u>: constrains neutrino spectra

One of summer 2017 results : CP conservation is excluded with 2 σ CL.

→ See H. O'Keefe talk's.

This talk: How can we walk towards new achievements?

Beniamin Ouilain

- Motivations for T2K phase II: First experiment to exclude CP conservation > 3σ !
- <u>Limited by our current systematics in far detector (Super-K) sample</u>: from 5.1 % to 6.8 %

- W/o decreasing current systematics: phase space very limited even for 20 x 10²¹ POT.
 - \rightarrow A 3σ exclusion possible almost only if $\delta_{\rm cp}$ =- $\pi/2$ and normal hierarchy.
- Decreasing systematics to 4 % \ll 5 x 10²¹ POT (>2 times current T2K statistics).

List of current systematic uncertainties

Benjamin	Quil	ain
----------	------	-----

$\delta_{N_{SK}}/N_{SK}$ (%)				
1-Ring μ 1-Ring e				
ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	$\nu/\bar{\nu}$
3.9	3.3	2.5	3.1	1.6
1.5	2.1	2.5	2.5	3.5
2.8	3.3	3.0	3.3	2.2
0.0	0.0	2.6	1.5	3.1
0.0	0.0	1.5	3.0	1.5
0.8	0.8	0.2	0.3	0.2
5.1	5.2	5.5	6.8	5.9
0.0	0.0	4.1	4.0	0.8
	ν mode 3.9 1.5 2.8 0.0 0.0 0.8 5.1	1-Ring μ ν mode $\bar{\nu}$ mode 3.9 3.3 1.5 2.1 2.8 3.3 0.0 0.0 0.0 0.0 0.8 0.8 5.1 5.2	1-Ring μ 1- ν mode $\bar{\nu}$ mode ν mode 3.9 3.3 2.5 1.5 2.1 2.5 2.8 3.3 3.0 0.0 0.0 2.6 0.0 0.0 1.5 0.8 0.8 0.2 5.1 5.2 5.5	1-Ring μ 1-Ring e ν mode $\bar{\nu}$ mode ν mode $\bar{\nu}$ mode 3.9 3.3 2.5 3.1 1.5 2.1 2.5 2.5 2.8 3.3 3.0 3.3 0.0 0.0 2.6 1.5 0.0 0.0 1.5 3.0 0.8 0.8 0.2 0.3 5.1 5.2 5.5 6.8

• <u>Uncertainty on extrapolation of ND280 constraints to SK</u> Same flux, <u>target</u>, <u>acceptance</u> between near and far.

Far detector

Near detector

<u>Target</u>: $100 \% H_2O vs 80 \% CH + 20\% H_2O$

Acceptance : 4π vs Foward

List of current systematic uncertainties

Benja	TAMANA /	1777	0111
	,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,

2016 analysis error table	$\delta_{N_{SK}}/N_{SK}$ (%)				
	1-Ring μ 1-Ring e				
Error Type	ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	$\nu/\bar{\nu}$
SK Detector	3.9	3.3	2.5	3.1	1.6
SK Final State & Secondary Interactions	1.5	2.1	2.5	2.5	3.5
ND280 Constrained Flux & Cross-section	2.8	3.3	3.0	3.3	2.2
$\sigma_{ u_e}/\sigma_{ u_\mu},\sigma_{ar u_e}/\sigma_{ar u_\mu}$	0.0	0.0	2.6	1.5	3.1
NC 1γ Cross-section	0.0	0.0	1.5	3.0	1.5
NC Other Cross-section	0.8	0.8	0.2	0.3	0.2
Total Systematic Error	5.1	5.2	5.5	6.8	5.9
External Constraint on θ_{12} , θ_{13} , Δm_{21}^2	0.0	0.0	4.1	4.0	0.8

- <u>Uncertainty on extrapolation of ND280 constraints to SK</u> Same flux, <u>target</u>, <u>acceptance</u> between near and far.
- Important cross-section model dependency that might be not represented in this table. Q^2 dependency of the cross-section, 2p2h interactions, Final State Interactions etc.

SK predictions constrained model independently - Measurement from ND.

List of current systematic uncertainties

Need a ND that has:

- 1. Similar nucleus target as Super-K (O if possible, C otherwise): eross-section models
- 2. 4π angle acceptance as SK (4π) for lepton kinematics: Efficiency corrections
- 3. High granularity to identify interaction final states (track low momenta hadrons) → Improve the energy reconstruction.

II-Upgrade of the ND280 detector

- 1. Existing two FGD targets: H₂O + CH ~ 1.8 T each
- 2. One new <u>fully active plastic</u> target embedded in 4π tracker ~ 1.5 T Maximal acceptance coverage
- 3. Use 3 ND280 TPC + build 2 new TPCs & support structure
- \rightarrow particle momenta can be measured in all direction (SK 4π angular acceptance)

Super-FGD

Horizontal FGD

Super-FGD Pros 4π High resolution for low momenta hadrons Cons Challenging assembly Large costs

Horizontal FGD Well known, easy assembly Low cost

Not 4π

Main candidate: R&D already started at INR

→ Now prototype @CERN for test beam

Impact on the reconstruction efficiency

<u>Muon reconstruction @large angle</u>: Increase from 10 % \rightarrow 50 % w/ the upgrade

- Extrapolation at FD should be driven by data, not models!
- <u>Test upgrade capability to reduce model dependency</u>: one example on 2p2h models.
- 2 fake data set: Nieves 2p2h (current BANFF) and w/ Martini-model $\frac{\text{w}}{8} \times \frac{10^{21} \text{POT}}{10^{21} \text{POT}}$

- Potential degeneracy of data sets at small angle can be solved at high angle with the upgrade → Reduce the model dependency when extrapolating at SK.
- It is only 1 example. <u>Cross-section models have high Q² dependency</u>: crucial to probe different effects at high angle

Reminder of our wishlist:

- 1. 4π angle acceptance as SK (4π) for lepton kinematics: Efficiency corrections
- 2. High granularity to identify interaction final states (track low momenta hadrons).
- 3. Similar nucleus target as Super-K (O if possible, C otherwise): eross-section models
- → How about constraints on water target at large angles? → WAGASCI

WAGASCI tracker: Alternance of XY planes & 3D grid scintillators.

 4π angular acceptance

Good vertex resolution (even for large angle tracks)

Goal: Cross-section measurement on water (& H₂O/CH ratio) with high angle acceptance.

Module ID card:

Module size: $100 \times 100 \times 40 \text{ cm}^3 \sim 0.4 \text{ tons}$.

Cell size (resolution): 5.0 x 5.0 x 2.5 cm³ cells

<u>Plastic background substraction</u>: <u>H</u>₂O:CH(Plastic)=8:2 in H₂O module.

Stage 0: the prototype module

Benjamin Quilain

First: Construct one H₉O module and installed @beam-axis (0 deg off-axis) in autumn 2016.

Goals:

- 1. Demonstrate module performances
- 2. Measure absolute XSection of ν / $\bar{\nu}$ on H₂O and H₂O/CH ratio on-axis (E~1.5 GeV)

Second: Construct another H₉O module and installed @1.6° off-axis few weeks ago.

Plastic Module Module 2nd water module (new!)

Goals:

Reproduce on-axis measurement at lower energy (~SK neutrino).

Our first neutrino event!

<u>Limited to foward direction (<45 degrees)</u>: muon should penetrate INGRID module for ID.

Final Stage: off-axis 4π measurement

Final goal: 4π cross-section on H_oO @1.6° off-axis \rightarrow Covers SK phase space.

Requires:

- 1. Measure momentum 2 GeV/c with 50 MeV/c resolution
- 2. Separate 25 % \vee contamination in $\overline{\vee}$ -mode (Baby-MIND)
- 3. High angle muon range detectors (Side-MRD).
- 2 modules of vertical scintillators of 180 x 20 x 0.7 cm³.

INGRID cannot separate + 150 MeV/c resolution up to 900 MeV/c

Baby-MIND

Assembly is starting at Yokohama National University: ready before Apr. 2018

(Iron-) Magnetized downstream detector: 33 iron layers sandwiched w/scintillators

• Beam tests @CERN in June & July with various beam of different energy & polarization.

Example of muons

- Arrive @JPARC in Dec 2017.
- Start 4π measurement in April 2018.

T2K-II aims for the first evidence of CP violation \rightarrow Requires ND upgrade for a better coverage of the SK phase space.

1. Upgrade the existing ND280 detector:

Upgrade has actively started

 \rightarrow Relies on horizontal TPC and 4π fully active target.

R&D has already started both for Super-FGD target and new TPC

 \rightarrow Goal to be installed by 2020.

2. Use measurements of a new water-based 4π detector : WAGASCI

- 1. Promising cross-section results for CCinclusive, and exclusive channels are coming
- → On-axis foward measurements
- 2. A 2nd WAGASCI module successfuly started taking data from Oct. → New results @1.6°.
- 3. Start 4π measurement from April 2018.
 - \rightarrow Walk towards the first hint of 3σ CP violation in neutrino!

Additional slides

Benjamin Quilain

ND280 upgrade will have a fully active target:

- 1. FGD2 40 % water → O/C difference extrapolated at SK for foward region.
 - 2. Likely that statistics at large angle ≪ model differences between O and C.
- 3. There is WAGASCI (see end of this talk)

High granularity:low momenta hadron tracks,calorimetric information

Impact on the selected interaction

M. Lamoureux

		# evts	purity (in %)		
		$(/10^{21} \text{ POT})$	$CC0\pi$	$\widetilde{CC1\pi}$	ĆCother
current	FGD 1	47337	75.9	64.4	61.8
	FGD 2	45939	75.7	65.1	64.4
upgrade	FGD 1	48374	74.7	64.5	70.2
	FGD 2	45719	73.4	63.8	70.1
	H.Targ.	100295	74.1	72.9	70.6

Muons not contained in the target only

CC- 0π selection

CC- 1π selection

Results of stage 0: the prototype module

Beniamin Ouilain

Goals:

Measure absolute XSection of ν / $\bar{\nu}$ on H_2O and H_2O/CH ratio for CC-inc., $CC0\pi$, $CC1\pi$.

→ Use the prototype module and the proton module.

<u>Limited to foward direction (<45 degrees)</u>: muon should penetrate INGRID module for ID.

The selection is not detailed here, but very similar to INGRID and PM.

After selection, for $7x10^{20}$ POT

Selection	Data					MC			
		$^{\rm CC}$	NC	$\overline{ u_{\mu}}$	$ u_e, \overline{ u_e}$	CH B.G.	Wall B.G.	ING B.G.	A 11
Vertexing		4.16×10^{4}	1.66×10^{2}					2.64×10^{5}	
Front veto		2.62×10^{4}	$1.04{ imes}10^{3}$	7.05×10^2	2.33×10^{2}	6.31×10^{3}	8.09×10^{4}	1.34×10^4	1.29×10^{5}
Fiducial		$1.17 imes 10^4$	4.68×10^{2}	3.36×10^2	1.06×10^2	3.32×10^3	3.49×10^2	$5.34 imes 10^2$	1.69×10^{4}
Track angle		1.13×10^4	$4.53{\times}10^2$	3.34×10^2	1.05×10^2	3.21×10^3	3.47×10^2	5.26×10^2	$1.63 imes 10^4$

 \rightarrow Statistical uncertainty is 1.3% for H₂O measurement and 1.6% for H₂O/CH.

Oct. 2016 Oct. 2017 Apr. 2018

On-axis: Prototype module

v measurement

On-axis:

Prototype module v measurement

 1.5° off-axis: H_oO module v measurement

<u>1.5° off-axis</u>: H₂O + prototype modules +

Side-MRD + Baby-MIND

Beniamin Ouilain

CC-inclusive measurement passed the T2K cross-section group review (T. Koga).

Other results will be released soon: differential measurements (M. Licciardi & B. Quilain)

Systematic errors (so far):

Absolute H₂O systematic error ~10 %

 ${\rm H_{3}O/CH}$ ratio systematic error ~ 3-5 %

Detector error dominated by external background contamination → No veto planes.

<u>July 2017</u>: Assembly of WAGASCI H2O module completed. Leakage tests. Channel testing with Easiroc module.

Glue WLS fibers to grooves of scintillators

Assembly of H₂O module

5th of August 2017: installation of WAGASCI H2O module at B2.

Successfully done!

Proton module, water module and one INGRID module areat B2!

Goals: Extend the foward measurements to the high angle region.

2 modules of vertical scintillators of 180 x 20 x 0.7 cm³.

S-shape scintillator w/ 2 read-out : allows to determine the Y position with time-difference

Spatial resolution in Y direction:

$$\sigma_{x} = 6.01 \text{ (cm/ns)} \times 1.04 \text{ ns} = 6.25 \text{ cm}$$

→ Assembly is starting at YNU. Will be ready before Apr. 2018

(Iron-) Magnetized downstream detector: 33 iron layers sandwiched w/scintillators

Goals:

- 1. separate v/\overline{v} by observing the muon charge.
- 2. Determine $p_u < 2 \text{ GeV/c w/} < 100 \text{ MeV resolution}$.

Beam tests @CERN in June & July with various beam of different energy & polarization.

Shipped to JPARC in October 2017.

 \rightarrow Ready for Apr. 2018.

Reconstruction efficiencies:

 $52 \% \rightarrow 87 \%$ of pions reconstructed

Statistical limitations (1/4 of the water module mass) \rightarrow Measurement request $\sim 4.5 \times 10^{21} \text{ POT}$

Separation on CCQE & 2p2h & FSI effects use proton counting & transverse variables

First results using the PM: no 2π capabilities + most of the track exits \rightarrow no p measurement

→ Promising separation already seen between 2p2h and Ma effect → will try to pursue