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& LAr-TPC Detectors.
> Why Liquid Argon?

€ Neutrino Event Reconstruction.
> LAr-TPC Challenges.

€ Simulation & Reconstruction:
> |ow-level Signal Processing.
> Pattern Recognition.
> High-level Reconstruction.

€ Summary

MicroBooNE

Will mainly focus on LAr-TPC event reconstruction in this review talk

Andy Blake, Lancaster University Slide 2



Introduction

€ One of the key technologies in the current and future neutrino physics
programmes is the Liquid Argon Time Projection Chamber (LAr-TPC).
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LAr-TPC Neutrino Detectors

Single-phase LAr-TPC
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€ How does a LAr-TPC detector work?

> Charged particles produced by neutrino
interactions deposit ionisation trails
in the Liquid Argon.

> The ionisation electrons drift in an
applied electric field.

€ In a single-phase LAr-TPC detector,
the electrons are detected by a series
of wire planes.

> Two types of wire plane: induction
and collection.
€ Single-phase LAr-TPC detectors:
> Past: ICARUS, ArgoNeuT.
> Current: MicroBooNE, LArIAT.

> Coming soon: SBND, ICARUS (@SBN),
ProtoDUNE.
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LAr-TPC Neutrino Detectors

€ In dual-phase LAr-TPC detectors,
the ionisation charge is extracted
from the liquid into a gas phase.

> Once in the gas phase, gas
the signal is amplified using
Large Electron Multipliers.

> The amplified signal is collected
using a 2D segmented anode.

> Amplification yields clean and
high-amplitude signals. o
liquid
€ Dual-phase LAr-TPC detectors:
> 5t demonstrator (3x1x1 m3)
currently operating at CERN.

> Coming soon: ProtoDUNE.
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LAr-TPC Images

€ Both types of LAr-TPC detector output multiple 2D images which

each display “channel vs time”.

e.g. Simulated ot event in single-phase ProtoDUNE:
LArSoft’s ProtoDUNE sim.: test-beam 3 GeV/c n*
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R. Sulej (CERN Seminar, 2017)

Induction 2

Induction 1

€ Need to recombine these 2D images to reconstruct 3D events.
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Why Liquid Argon?

: PR T € LAr-TPC detectors are fully active
ve GC.candidate . rg? ot I and fine grain, offering superb
spatial and calorimetric resolution.

> Reconstruction of multi-prong

final states.
0 > Particle identification:
Tt I - u/p/K in particle tracks.

- e/y in electromagnetic showers.

multi-prong + 2y Run 825, Event 12481 I > High efficiency & low background
Collection View .
in most channels.

€ In particular, this means they are
highly effective detectors for
v,—V, oscillation searches.

> Golden oscillation channel!

. ® LAr-TPC detectors are scalable to
R. Acciarri et al, Phys. Rev. D 95, 072005 (2017)  Multi-kiloton masses.
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Neutrino Event Reconstruction

€ A precise reconstruction of neutrino interactions is required to
achieve the physics goals of the LAr-TPC neutrino programme.

Conversion of raw LAr-TPC images

Neutrino event reconstruction = . : . .
into analysis-level physics quantities.

LAr-TPC Images

Lowcharge B High charge Physics Quantities

ArgoNeuT i
9 % Neutrino flavour and

interaction type.

% Interaction vertex.

* Final-state particles
and four-momenta.

time’:

* Neutrino energy.
(etc...)

:

C. Anderson et al, JINST 7 P10019 (2012)
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Neutrino Event Reconstruction

€ The LAr community is developing advanced and automated techniques
of neutrino event reconstruction that can fully exploit the fine detail in

LAr-TPC images and can handle the large volumes of data.

€ Reconstruction of LAr-TPC images presents a number of challenges:
> Many images to process!

> Each image has many pixels, including > L

a variety of sources of noise. 7 < BUSLETE - _
> Loss of 3D information in 2D images. / p
> Detector effects baked into images. T

> Complex final-state event topologies, _
with unknown interaction vertices. A simulated 3-GeV v,

> High rates of cosmic-ray background

in surface-based experiments. H. Wei (DPF 2017)

€ This reconstruction effort remains a work in progress, but considerable
progress has been made over the past few years.
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Common Software

€ Most LAr-TPC simulation and reconstruction software is available via
a common framework LArSoft.

> Means that software and expertise are shared between experiments.
Also fosters collaboration within the LAr neutrino programme.

Experiment-
specific code

\

specific code

y

Experitment-
specific code

==

C. Jones, CHEP 2016

= | Experiment-

Experiment- R
specific code
LAr
Sofft
Core LArSoft
code B L Experiment-
specific cnda
/ \ nBOONE _
art
External framework
product software
libraries M
External software

projects

www.larsoft.org
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LAr-TPC Signal Formation
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Reconstruction Chain

LAr-TPC Images Noise Filtering
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Noise Filtering

MicroBooNE  gefore noise removal

Before N—oi'se_ Filter

"V wire No. o

(a)
MicroBooNE After noise removal
After Noise Filter

—~

' 4

Single-phase (MicroBooNE)

1000 1560
V wire No.

(b)

~ # Significant improvement in signal-to-noise!

ADDC from baseline

& First apply offline filters to raw waveforms

to reduce excess noise.

> Techniques include masking characteristic
frequencies and subtracting coherent noise.

> Single-phase: e.g. MicroBooNE obtains
Peak-Signal-to-Noise ratios of ~10-50.

> Dual-phase: Very clear images!

R. Acciarri et al, JINST 12, PO8003 (2017)

1600 S e ; - ¥ 50

1400 AT + e [ R

1200 | 4 : -

1000f

800 & ‘ 0

i i - = is IR
o e -

W Dualphase

200 ‘“ §3X1X1 nﬁ:{) | BN

0 S0 100 150 200 250 300
Chin View 0
S. Murphy (CERN Seminar, 2017)

Andy Blake, Lancaster University

Slide 13



Deconvolution & Hit-Finding

. . . . After noise removal  After 1-D deconvolution After 2-D degonvolution
€ In single-phase detectors, the ionisation /
signal is reconstructed by deconvolving 4 . /’
the LAr-TPC image. | :-'
i i B. Kirby (DPF 2017) BN : (TN
> This unfolds the field and b y y

Detector Response R(t)

electronics responses
of the detector.

Signal mV/fC
&

& After signal processing is =~ ¢ i
complete, identify regions |
of interest within image 4 SN
and reconstruct “hits”. 60 -40 20 0_ 20 40 s

Time (us)

T. Yang (ICHEP 2016)

’SQ Deconvolved waveform
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Pattern Recognition

€ In recent years, much of the effort has focused on the development
of fully-automated techniques of pattern recognition.

> Two challenges: (1) Identifying features such as tracks/showers.
(2) Combining 2D images to form 3D events.
€ A number of different approaches are now emerging:

2D LAr-TPC Images
e.g. Pandora & PMA Multiple efforts in

- ~
-

packages ___-="""" & g. WireCell \\\ >, _ Europe & USA!

~
& n

2D pattern recognition

\4

~

y ~
3D image reconstruction A
:
\4
3D pattern recognition
II
l

Deep

Learning
2D/3D matching &

3D reconstruction

s

3D tracks, showers, vertices (etc...)
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Pandora

€ Pandora is a well-established toolkit for
pattern recognition in fine-grain detectors.

€ Implements a multi-algorithm approach:

> Uses many (~100) focused algorithms
to incrementally build up the event.

€ Takes 2D hits as its input, and outputs
3D tracks/showers/vertices and their

parent-daughter relationships.

Track (p), daughter of primary p

MicroBooNE
Vi CCm*

Track (p), primary daughter of v,

Shower (e*), daughter of primary m*
Zﬂc; , primary daughter of v,

Track (u'), primary daughter of v,

2D Pattern Recognition
(Multiple algorithms)

Iterative 2D/3D Matching

# Match up 2D clusters to
form 3D clusters.

# Use 3D information to
refine 2D clustering.

3D Event Building
(Multiple algorithms)

MicroBooNE V2
0
v, CCx
R. Acciarri et al, Y1
arXiv:1708.03135 »
. o «—— Interaction Vertex
w, wire position
“‘ Simulated unresponsive channels
x, drift position /ﬂ S.in
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Fraction of Events

Pandora

€ Highly modular approach enables the re-use of Pandora algorithms for
different reconstruction applications.

€ Two reconstruction paths developed so far:

Cosmic ray
> PandoraCosmic — optimised for cosmic muons. pf:r"zjgs
> PandoraNu - optimised for neutrino events.
[
€ Pandora reconstruction has formed the basis 4 Deita ray (shower)
/ particles, daughters of

of the preliminary results from MicroBooNE.

/ < the cosmic ray

/ Example of cosmic ray

Simulated BNB CC =t interactions: / reconstructed by Pandora
0.14 T T T T T > v T T —r T T ™7 1 e e e e o e e B B e e e B e i
¥ MicroBooNE Simulation g . e e " .
0.12 vitArsw+pex ] 8 L. Escudero (Rencontres du Vietnam 2017)
. ' O osf - N
0.10 ff 1 =
uJ I N - - -
0.08 1 § os —+ . R. Acciarri et al, arXiv:1708.03135
0.06 1 3 .F AREOR0NMES SNRason #Matched Particles | 0 1 2 34
= L V,+Ar - +p+at
0.04 1 2 | —u ] m 35% 95.1% 14%  0.0%
002 b 1,1\ B § 02 p ] p 9.0% 86.8% 40%  0.3%
- N I~ + R +
N L c b ] n 6.9% 80.9% 11.4%  0.8%
o 1 2 3 4 5 0 1 2 3
Vertex AR [cm] True Momentum [GeV]

Andy Blake, Lancaster University Slide 17



Projection Matching

€ Projection Matching Algorithm (PMA) is a precise multi-trajectory
track-fitting algorithm originally developed for ICARUS.

> Fits a series of 3D polygonal trajectories to an event by optimising
their 2D projections relative to the underlying 2D hits.

3 1X > Also identifies 3D vertices in events (interactions and decays)
"~ and re-optimises the 3D tracks accordingly.

> Impressive tracking efficiency in DUNE v, CC events!

DUNE Preliminary

& |
o '5 1 0 W g g e g . -
» | g T :
> 2 0\ w [ .
f 0.8~ -
1 £ PMA
I'; ‘ ~ 0.6~ : .
r’ \ _ ]
!1 \\. 0_4—_ e .
\\ : .
f : \ i ]
\ i\ | | A I TN BN SR SRR
| Collection \ | Induction2 ) A % 5 10 l:/I 5 v 20t n V2)5
uon Momentum (Ge
M. Antonello et al, AHEP 2013, 260820 (2013) T. Yang (ICHEP 2016)
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3D Tomography

€ The WireCell toolkit exploits the analogy between 3D reconstruction
in LAr-TPC detectors and Computerised Axial Tomography (CAT).

> In CAT scanners, a 3D image is reconstructed from a series of
2D voxelised projections.

€ Applying similar mathematical methods, set up a system of equations
connecting 2D LAr-TPC images to true 3D patterns of ionisation:

Measured charges True charge hits to ulste two plan\(’a3s for illustration
i be solved
on wires Ul Trué Hits V2
ul 000111 (Z;\ o vl
u2 111000 = 11 N\ |
ol [Ef001001 | || 2 Atatime @ Fake’Hits
v2 010010 e Ha H2 g
v3 100100 7 o
\ H6 ) - H3
Matrix determined ®
by geometry H. Wei (DPF 2017) H6

(Use L1-regularization to remove ambiguities and reduce complexity).

Andy Blake, Lancaster University

Slide 19



3D Tomography

€ On solving tomographic equations, obtain these superb 3D images:

Example 3D Cosmic
Event (Data)

\ 4

[

Wire-cell 3D image

(of charge)
2 GeV
Boo@
RBOODY DUNE 35t
Run 1463 Event 23. August 15t 2015 10:37 simulation

http://www.phy.bnl.gov/wire-cell/bee/

€ Development of 3D pattern recognition algorithms is now underway.
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Deep Learning

€ The past few years has seen a revolution in the science of big data,
particularly in the areas of computer vision and image recognition.

1.31 dog
0.31 plays
0.45 catch
-0.02 with
0.25 white
1.62 ball

-0.10 near

Reconstruction®

-0.07 wooden
. £
0.22 fence

. _Where we’re going, we don’t need

s

reconstruction.

S 55 e SR A. Radovic (DPF 2017)

\_‘ Lo Ao S LR - e N S
iw—wﬁik oS 37 TR AT
~ < N TR LTINS T
TR N RV N s R

€ These powerful image-processing techniques have clear applications
in pattern recognition for fine-grain neutrino detectors.

> A possible game-changer for neutrino physics experiments?
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Deep Learning

€ A number of neutrino experiments have demonstrated the use of
convolutional neural networks (CNNs) for pattern recognition.

> CNNs are artificial neural networks with many hidden layers.

> They identify characteristic features within images by applying
many successive convolutional filters and pooling the outputs.

> The technique naturally lends itself to LAr-TPC image analysis.

True NuMu DIS Event

Feature Map From Col. View Inception Module

Col. View !

g L —

T A. Radovic’(DPF 2017)  °

100 200 300 400 500

Wire
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Deep Learning

€ A variety of CNN techniques have been Semantic Segmentation:
successfully demonstrated on LAr-TPC "
data by MicroBooNE and DUNE.

> Event Classification.
> Object Detection.
> Pixel Labeling (Semantic Segmentation).

Object Detection: @

> input: 2D ADC ,.f/-/ . /

ProtoDUNE simulation, LArScht

e
e
/

, f ;;/’/CNN output:

T 47 EM-like (blue) / track-like (red)
i /,/"’/ ! o _—
wire number SR
T. Wongjirad (DPF 2017) R. Sulej (CERN Seminar, 2017)
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DUNE FD Events, With Oscillations,

Deep Learning

€ The early results from MicroBooNE and
DUNE are extremely promising!

€4 Have only touched the surface so far.

> Much room for future advancement.
Will also be tested on real data.

DUNE Far Detector

Neutrino Beam

Survived NuMu
Beam NuE
— NC
—— Appeared NuE

LI

—— Appeared NuTau

Work in progress

Arbitrary Exposure

998 521 98.6 858

A. Radovic (DPF 2017)

Selection Efficiency

Appearance Efficiency (FHC)

Work in progress

-~ Goal Performance

CVN: First Pass

Reconstructed Energy

Events

MicroBooNE
1600— GooglLeNet 5 Particle Network
1400f
1200 .....MicroBooNE
Simulation
1000f
800 [ — Muon
[ Pion
600}
400 _
—b_lj—ljf R By WY
8.0 0.2 0.4 0.6 0.8 1.0
Muon Classification Score
800 GooglLeNet 5 Particle Network
700 B
600 icroBooNE
Simulation
" 500p :
-
c [ Electron
4
E 00 [ Photon
300
200 1 -
100 8
8.0 0.2 0.4 0.6 0.8 1.0

Electron Classification Score

R. Acciarri et al, JINST 12, P03011 (2017)
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High-Level Reconstruction

€ The measurement of event-level physics quantities involves a
variety of reconstruction tasks, for example:

Particle Identification:
Calorimetry: Determine PID from dE/dx information.
Calculate dE/dx from Use end of track for u/K/p separation.
lonisation charge. Use start of track for e/y separation.

n% mass
Reconstruction

Neutrino Events:
Background Rejection.
Flavour ID.

Energy Estimation. Michel Electrons

ArgoNeuT
Energy Estimation: Track Fitting:
Muon tracks. Determine track direction and trajectory.
Electromagnetic showers. For exiting tracks, determine momentum.
Hadronic activity. From multiple Coulomb Scattering.
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€ A complete chain of high-level reconstruction was developed by ICARUS:

Tracks:

Calorimetry using
dE/dx information

Muon momentum
from multiple
Coulomb scattering

Event-building

30

s | dE/dx vs. residual range | | ..
for p, r, u compared to os
Bethe-Bloch curves

v

20[E

dE/dx [MeV/cm]

0 10 20 30 40 S50 60 70 80 90 100

residual range [cm)

Myy: 133.8 =4 .4(stat)x=4(syst)

MeV/c?

Showers: T

w

79 mass

2

e/y separation
Energy estimation

0.5

0

J. Kisiel (New Trends
in HEP, 2016)

) ' 1 1 " "
60 80 100 120 140 160 180 200 220 240
mass [MeVic*2)

LAr TPC: very good e/y separation:
excellent rejection of NC background to v, events

dE/dx distribution

for

muon tracks from
CNGS events

real and MC

-

/I-ryﬂucfionZ
- o 0
e AT

Conversion distances
6.9cm, 23 cm
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(dE/dx)" (MeV/cm)
P

ArgoNeuT

€ The neutrino results from ArgoNeuT (and test-beam results from LArIAT)
are also based on a complete high-level reconstruction.

For example, powerful demonstration of PID capabilities using calorimetry:

> Jonisation loss in Bragg peak can be parameterised as: dE/da: ~ AR 04
(where R = residual range, and A is characteristic of the particle type)

> Can determine A by averaging dE/dx values: A = ( (dE/dx); X R;ro'42>

Monte Carlo Truth

10°f [— Deuteron param |
f dE/dX VA R | —— Proton param
| sweneee Proton NIST
[ | — Kaon param
| -~ Pion param

101

- Similar slopes
' Different intercepts

|

1

1 10
Residual Range (cm)

Arbitrary unit

S
o
w
n

Muon
Pion
0.3 Kaon

B Proton

02F
0.15F
0.1

0.0

6

<A>

8

10 12 14 16 18 20
PIDA (MeV/cm'#?)

R Acciarri et al, JINST 8, PO8005 (2013)

# Tracks

Proton Tracks

1000: First Stage
| * Proton Fit
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600}
400/ n d
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High-Level Reconstruction

€ Among the current efforts on high-level reconstruction:
> Adapt and develop tools for new projects (e.g. ProtoDUNE’s).
> Connect high-level tools with fully-automated pattern recognition.
> Apply to real data — and analyse physics! (e.g. MicroBooNE).

€ Many promising results (too many to fit on one slide...):

Fully-automated v, CC event reconstruction
(DUNE simulation):

Fully-automated reconstruction
of Michel electrons (MicroBooNE):

= : 12000F ™ T T — 2 'Michel Electron Reconstructed Energy Spectrum
shower *:' - 1 § 20| } DATA ,
P = B o Simulation
St k -. S 10000[ Mean = -0.00 T H*“
-~ trac : I ] 2 .
i —— — ——— — 4 8000}~ 0=0.13 » 15| : MicroBoolE ]
2 ' L < + * statistical errors only
E 3 - @ ¢ ¢
2 = | 6000} g " ;
3 1 : $10 :
E —I 4000( 3 t
3 e B 2 o 3
e E [ DUNE work : ¢ :
= 3 2000[~  in progess g5 —1 g
E = C H t '
:I o P 1 " 1 " g "
. -2 = 0 1 P L R B s

M. Wallbank (EPS-HEP 2017)
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N. Grant (DPF 2017)

0 10 20 30 40 50 60 70 80
reconstructed energy [MeV]

R Acciarri et al, JINST 12, P09014 (2017)
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[ summay

€ The use of Liquid Argon technology is one of the cornerstones
of the current and future neutrino programmes.

> A number of new LAr-TPC detectors will come online in the
next couple of years.
€ High-performance reconstruction techniques are required to
meet the physics goals of the LAr neutrino programme.
> LAr-TPC reconstruction presents many challenges!
€ The LAr community is making great strides in the development
of advanced and fully-automated reconstruction algorithms.

> Many innovative ideas are being explored and demonstrated,
particularly in the area of pattern recognition.

> The common framework of LArSoft is facilitating this effort.

€ This is a work in progress, and further advances will follow.
Watch this space!
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