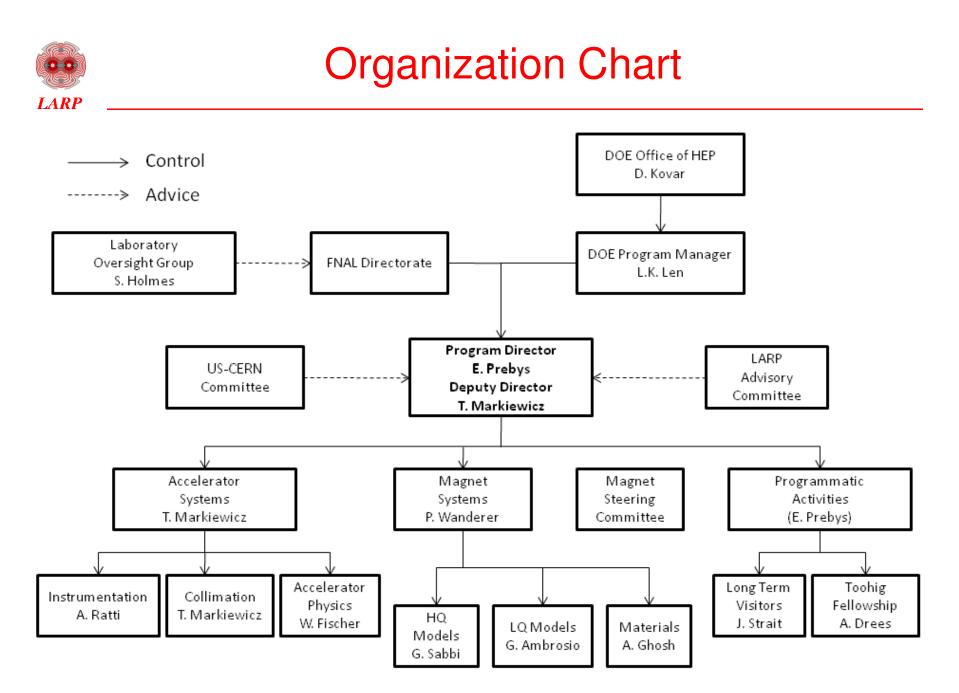
US LHC Accelerator Research Program

US LHC Users Organization Annual Meeting September 25-26, 2009

GianLuca Sabbi, LBNL

C CERN

Coordinate US LHC Accelerator Research:


- Started in 2004, expected to be completed around 2014
- Progression from the US LHC Accelerator Research Project
- Collaboration of four national Labs: BNL, FNAL, LBNL, SLAC
- Funding level: \$12-13M/year (FY06-FY10)

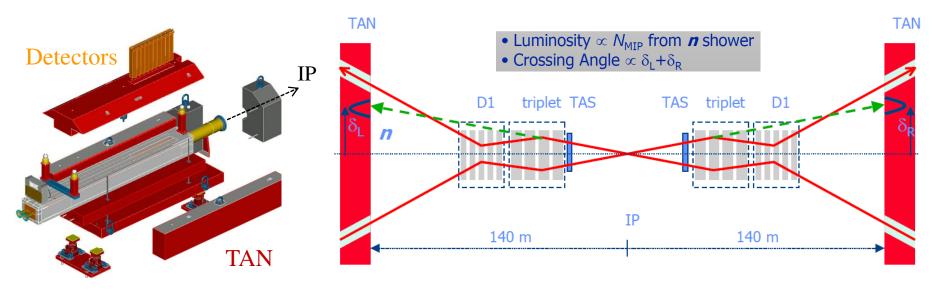
Goals:

- Extend and improve the performance of LHC
 - > Maximize scientific output in support of the experiments
- Maintain and develop US Labs capabilities

Prepare for a leadership role in future projects

- Research and training for US accelerator physicists and engineers
- Advance international collaboration on large accelerator projects

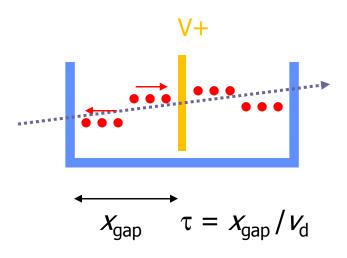
Overview of LARP Activities

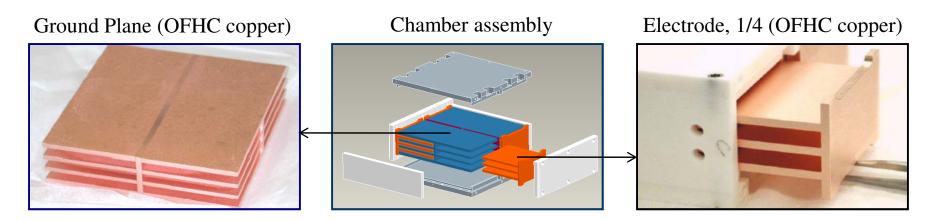

Accelerator Systems	<u>Instrumentation</u>	 Luminosity monitor Tune tracker, AC dipole Schottky monitor
	Accelerator Physics	Electron cloud instabilityBeam-beam studiesCrab crossing
	<u>Collimation</u>	Rotatable collimators
Magnet Systems	<u>Materials</u>	Strand characterizationCable development
	Model Quadrupoles	Technology QuadrupolesHigh-field Quadrupoles
	Long Quadrupoles	Coil fabricationStructure and assemblyInstrumentation and Test
Program Management	Programmatic Activities	Toohig FellowshipLong Term Visitors

LARP

Luminosity Monitor

- Goal: measure/optimize the luminosity of colliding bunch pairs
- Approach: instrument TAN to measure forward shower from IP
- Performance requirements:
 - \geq 40 MHz bandwidth to resolve 25 ns bunch spacing
 - > High sensitivity to variations in IP position and crossing angle
- Very high radiation environment:
 - ➤ 25 MGy/yr, 10¹⁸ N/cm² & 10¹⁶ p/cm² over lifetime (20 years)
 - > ~100 times worse than any previous accelerator instruments

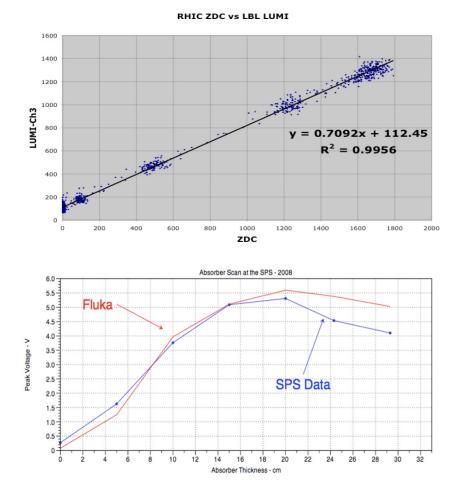

2009 US LHC Users Meeting


US LHC Accelerator Research Program

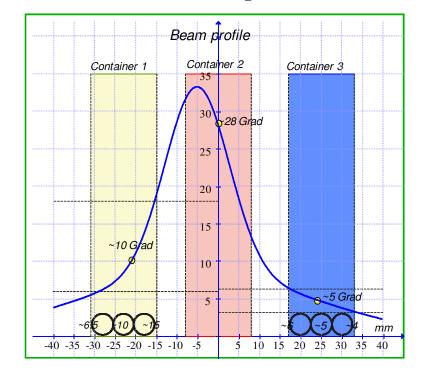
GianLuca Sabbi, LBNL

Design and Fabrication

- Concept (W. Turner, LBNL) : flowing gas (Argon) Ionization Chamber
- $Q = \int_{0}^{\tau} I(t)dt = \frac{1}{2}I_{0}\tau$ I_{0}
- Optimized for 6 parallel gaps:
 - \odot Signal increases with N_{gap}
 - \odot Capacitance increases with N_{gap}
- High precision machining and assembly


LARF

GianLuca Sabbi, LBNL


Prototype Testing

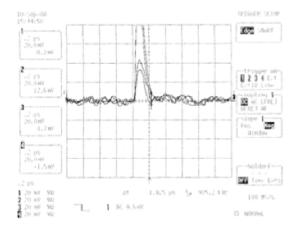
In-beam testing at RHIC and SPS

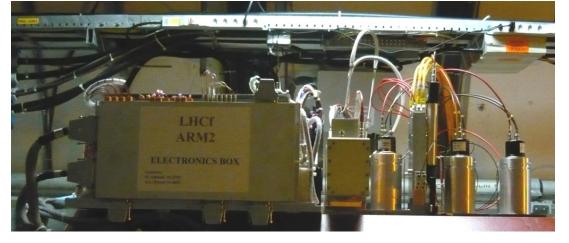
Irradiation at BNL Isotope Facility

- Protons and/or neutrons
- Up to 350 MGy total dose
- No observable problem



Installation and Commissioning


CMS


LARP

ATLAS

First LHC data (9/10/08)

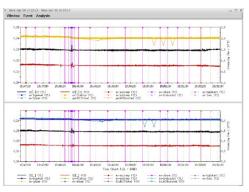
Beam commissioning plan

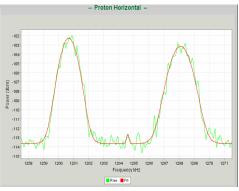
Mode	Bunches	Bunch Spacing	Luminosity [cm ⁻² s- ¹]	Interactions/ Xsing	Mean pulse height/ occupied bunch Xsing - mV
A–Collision studies with single pilot bunch beam - no crossing angle	1	N/A	2.5×10 ²⁶ - 3.7×10 ²⁷	0.0006-0.092	0.04-0.53
B–Collision studies with single higher intensity bunch - no crossing angle	1	N/A	1.1×10 ²⁹ - 4.3×10 ³⁰	0.27-10.71	16-611
C–Early p-p luminosity	43	2.025 µs	4.8×10 ³⁰ - 8.4×10 ³¹	0.28-4.86	15-277
	2808	25 ns	6.5×10 ³²	0.58	33
	936	75 ns	1.8×10 ³³	4.79	273
D–Nominal p-p luminosity	2808	25 ns	1.0×10 ³⁴	8.87	506
E–Ultimate p-p luminosity	2808	25 ns	2.3×10 ³⁴	20.39	1163

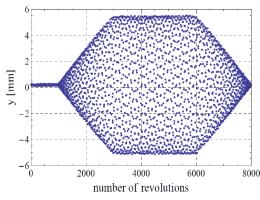
2009 US LHC Users Meeting

Other Beam Instrumentation

Tune and Chromaticity tracking / feedback:

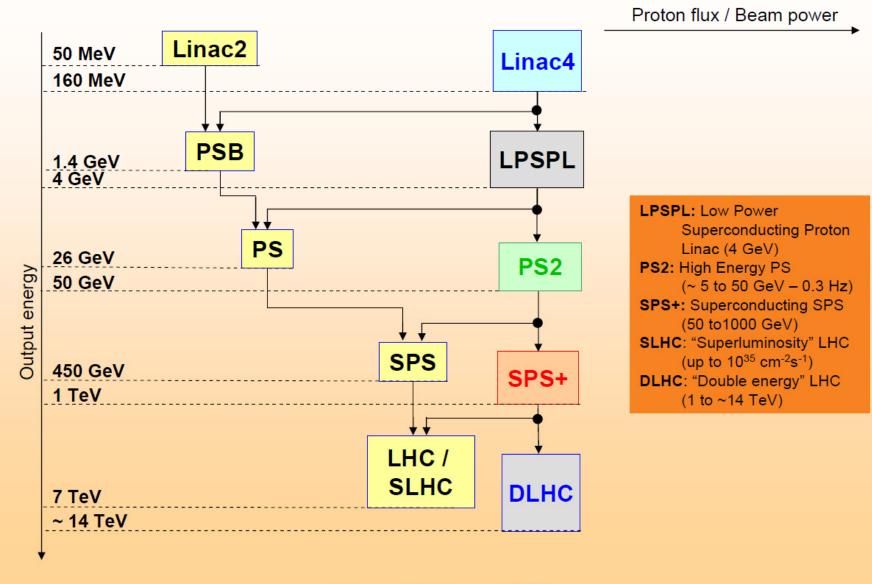

- ➤ Goal: control effect of persistent current snapback
- Fast measurements of betatron tunes and chromaticity
- Feedback to correction quadrupoles and sextupoles


High sensitivity pickups (Schottky monitors):


- ➤ Traveling wave structure operating at 4.8 GHz
- Tune measurement from peak positions
- Chromaticity measurements from differential width
- Momentum spread from average width
- Emittance from average band power

Beam Optics measurements (AC Dipole):

- > Approach: oscillating field drives the beam
- ➤ Safe oscillation, preserves emittance
- ➤ Three systems built at BNL, FNAL, CERN
- $> \beta$ functions, phase advance, dynamic aperture



GianLuca Sabbi, LBNL

Upgrade components

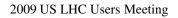
L. Evans – EDMS Document 974861

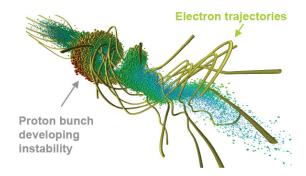
Accelerator Physics Studies

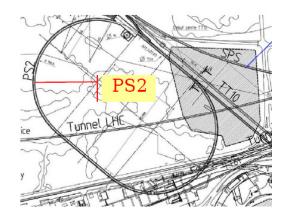
Electron cloud instability:

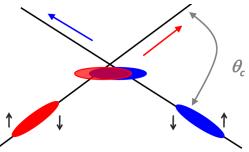
- Simulation tools (3D analysis)
- > SPS, PS2 studies and machine experiments
- Development of feedback systems

PS2 design:

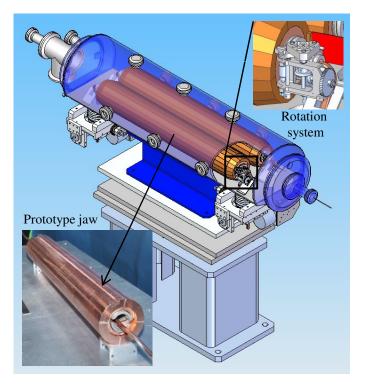

- Space-charge simulations
- Impedance, instabilities, feedback systems
- ➤ Laser stripping, Ionization monitor


Beam-beam effect:


- Wire compensation experiments in RHIC
- Electron lens experiments at Tevatron


Crab crossing:

- ➢ Deflect bunch at IP to collide head-on
- ➢ Restore luminosity loss due to crossing angle
- Requires special superconducting cavities
- ➤ Large collaboration (beyond LHC)



Collimation System

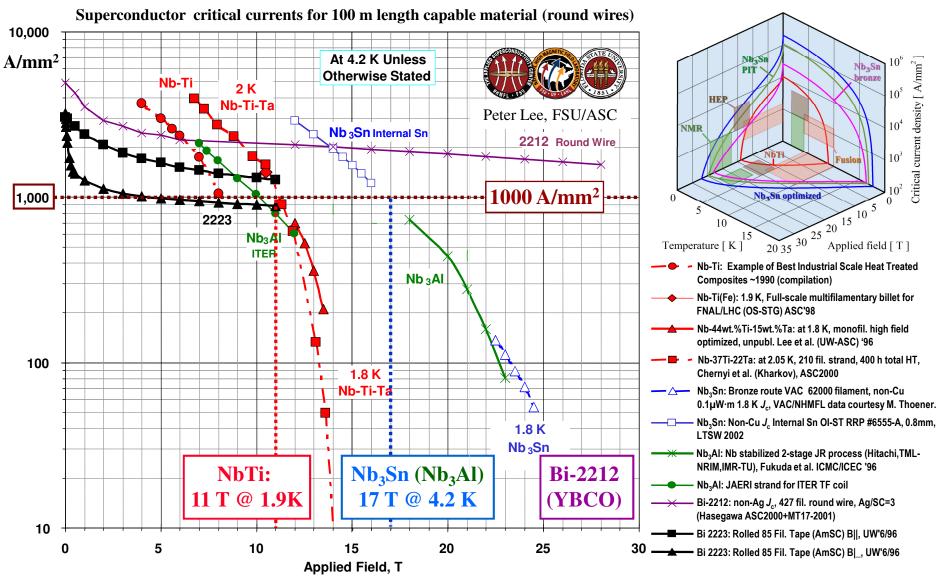
- A baseline collimation system has been installed for initial machine operation
- A "Phase 2" collimation system with 10x better efficiency is under development
- LARP has been developing a prototype "Rotatable Collimator" for Phase 2
- R&D issues: mechanical tolerances, thermal effects, impedance, robustness

Next steps:

- 2009 Build fully functional prototype• Vacuum & mechanical tests at SLAC
- 2010 Ship to CERN
 - Vacuum & mechanical tests at CERN
 - S PS Tests of impedance and BPMs
- 2012 Diagnostics for damage assessment
- 2013 In-beam test, technology decision
- 2014 Apply lessons learned to production

Physics goals:

- Improve measurements of new phenomena seen at the LHC
- Detect/search low rate phenomena inaccessible at nominal LHC
- Increase mass range for limits/discovery by ~30%


Implementation in 2 phases:

- Phase 1 (L= $2 \cdot 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$): ~2014
- Phase 2 ($L=10.10^{34} \text{ cm}^{-2} \text{sec}^{-1}$): ~2020

Required accelerator upgrades include new IR magnets:

- Directly increase luminosity through stronger focusing \Rightarrow decrease β^*
- Provide design options for overall system optimization/integration ⇒ collimation, optics, vacuum, cryogenics
- Be compatible with high luminosity operation ⇒ Radiation lifetime, thermal margins

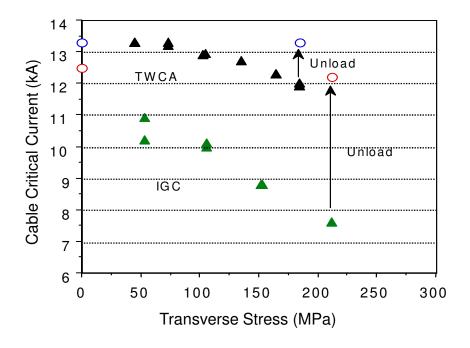
Conductor Options

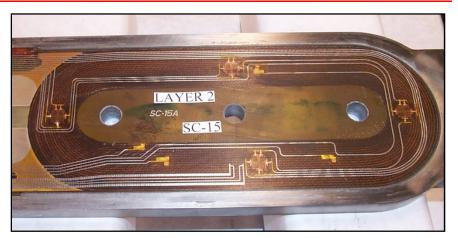
2009 US LHC Users Meeting

LARP

US LHC Accelerator Research Program

GianLuca Sabbi, LBNL

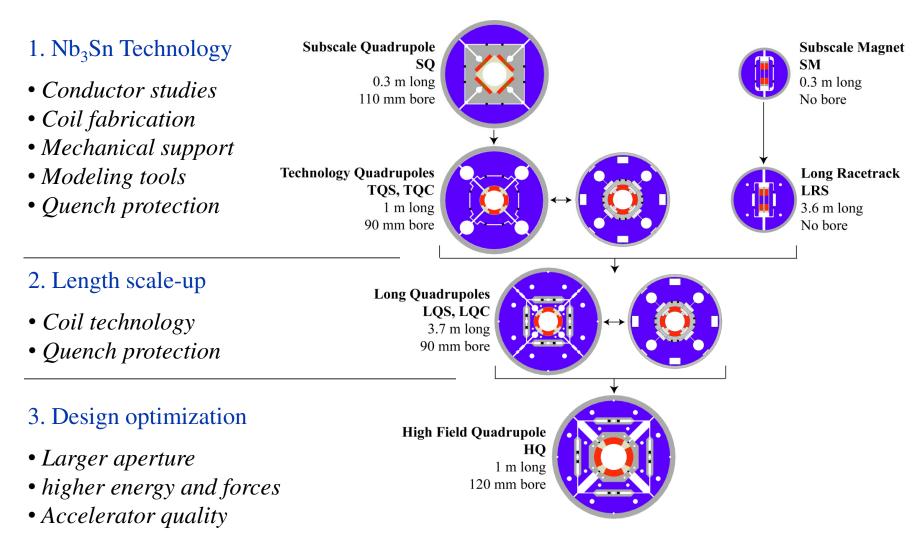

Nb₃Sn Challenges


Brittleness:

- React coils after winding
- Epoxy impregnation

Strain sensitivity:

• Mechanical design and analysis to prevent degradation under high stress



Material	NbTi	Nb ₃ Sn
Dipole Limit	10-11 T	16-17 T
Reaction	Ductile	~675 ⁰ C
Insulation	Polymide	S/E Glass
Coil parts	G-10	Stainless
Axial Strain	N/A	< 0.1 %
Transverse stress	N/A	< 200 MPa

2009 US LHC Users Meeting

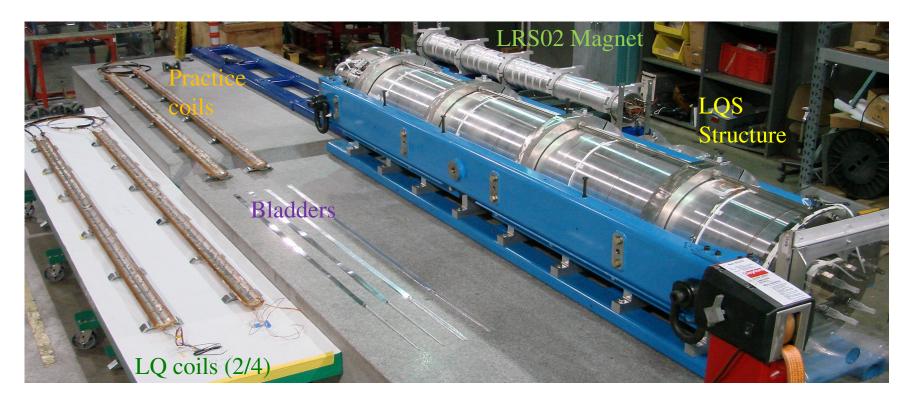
Magnet R&D Program

Technology Quadrupole Shell

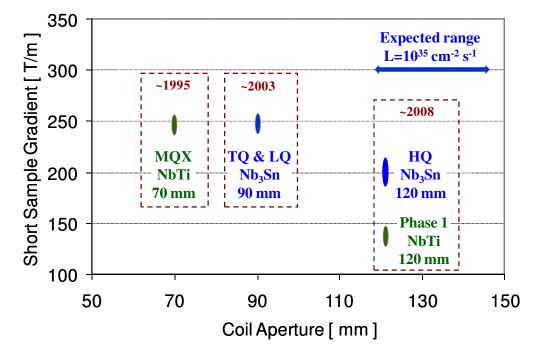
- A new strand design (RRP 108/127) was incorporated in TQS03 coils
- TQS03a achieved the best results to date: 238 T/m
- Exploring the stress limits in TQS03b: 160 MPa, only 2% degradation
- Next reassembly and test scheduled at CERN for December-January

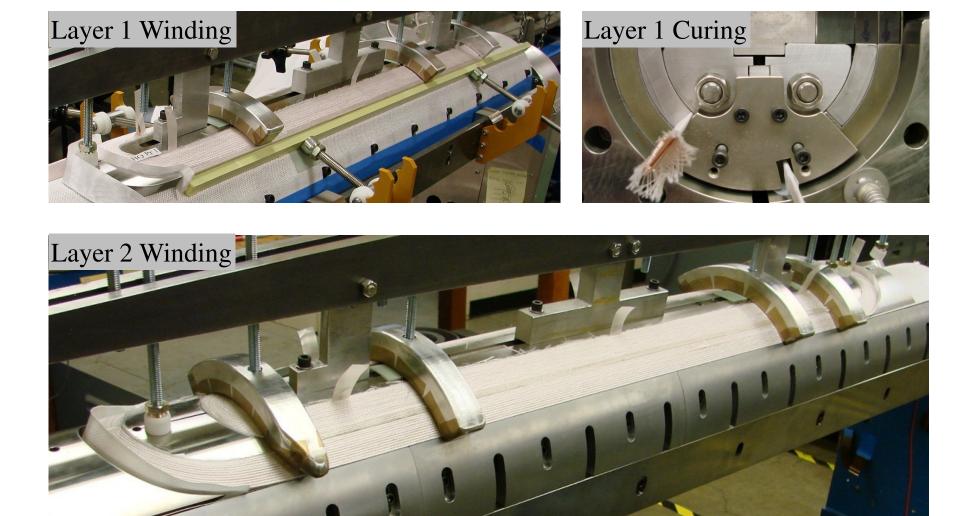
TQS	Test	G _{Max}	G _{Max} quench
Model	Location	(T/m)	Temperature
TQS01a	LBNL	200	3.2K
TQS01b	LBNL	182	4.4K
TQS01c	FNAL	191	1.9K
TQS02a	FNAL	222	2.2K
TQS02b	CERN	205	1.9K
TQS02c	CERN	231	2.7K
TQS03a	CERN	238	1.9K
TQS03b	CERN	233	1.9K

TQS Test Results


TQS assembly at CERN

Long Quadrupole


- Length scale-up of the Technology Quadrupole, from 1 m to 4 m
- Coil fabrication: BNL+FNAL; Support structure and assembly: LBNL
- LQS01 model assembled in August and shipped to FNAL for testing
- Additional coil fabrication and magnet tests are planned for FY10


Aiming at:

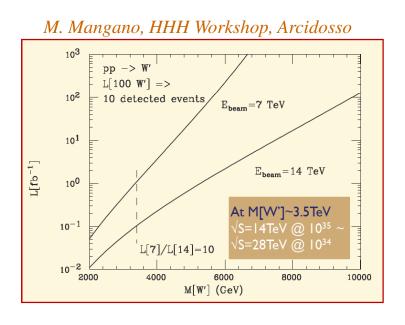
- IR Studies show *large aperture quads are required* for L=10³⁵ cm⁻² sec⁻¹
- Phase 1 (L=2 10³⁴ cm⁻²sec⁻¹) will use NbTi Quads with 120 mm aperture
- The same aperture was chosen for the next series of Nb₃Sn models (HQ)
 - Full qualification based on Phase 1 luminosity requirements
 - Providing performance reference for Phase 2 upgrade design

HQ Coil Fabrication

Energy Upgrade (DLHC)

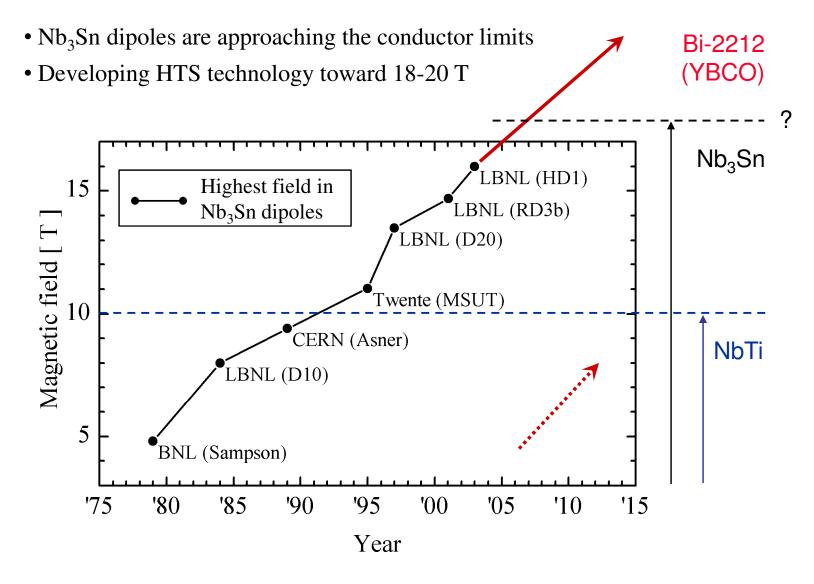
Motivation for a 14 TeV \rightarrow 28 TeV upgrade:

- Direct enhancement of physics reach by a factor of two in mass
- No major detector upgrades required


The better upgrade path depends on where and what the new physics is:

- Low mass: 10xLum better that $2xE_{beam}$
- *High mass: increase of* E_{beam} *is essential*

Strong physics interest in energy upgrade:


" $14 \rightarrow 28$ TeV is great, $14 \rightarrow 42$ is even better"

(M. Mangano, SLHC kick-off meeting)

Key R&D challenge is developing the high field dipoles

Progress in Maximum Dipole Field

Summary

Strong US involvement in support of the LHC Accelerator

- USLHC Project (1996-2005)
 - > IR magnets, absorbers, cryogenic feedboxes
- LARP Program (2004-2014)
 - > LHC Baseline: Commissioning, instrumentation
 - > LHC Upgrades: IR magnets, collimation, AP studies

New Construction Project: Accelerator Project for the LHC (APUL)

- Phase 1 upgrade (CD0-approved):
 - Separation dipoles (BNL) and cryogenic feeds (FNAL)
- Expected to expand toward Phase 2 upgrade:
 - ➢ Nb₃Sn IR Magnets, Collimation, Injector Systems