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Completely moving ROOT to GitHub
- Early 2017: GitHub serves as a mirror of https://root.cern.ch/git/root.git 
- Inconvenient to test and merge PRs
- https://github.com/root-mirror -> https://github.com/root-project 
- Modernizing GitHub presence: 

- Updating readme.md: Screenshots, links, badges, build instructions
- Better community interaction
- “Modern” open source development

https://root.cern.ch/git/root.git
https://github.com/root-mirror
https://github.com/root-project


Pull requests, @phsft-bot and Jenkins Pipelines
- Pull requests are picked up by a Jenkins web-hook
- Security: Only whitelisted users get automatic building

- Prevent unauthorized usage of our infrastructure

- Customization of platforms, compilers, and CMake flags through @phsft-bot
- Warnings, errors, and failing tests submitted as comments on PRs
- Implemented using Jenkins Pipelines

- https://github.com/root-project/jenkins-pipelines 

https://github.com/root-project/jenkins-pipelines














Jenkins Pipelines
- New job type available after Jenkins 2
- Jobs are expressed through a script instead of a form
- Groovy: Simplified Java, without semicolons
- Benefits: Flexibility, version control of pipeline script, persistent between 

Jenkins restarts
- Limitations: No matrix support, integration with free-style job plugins may vary



Pipeline example
node('centos7') {

    stage('Checkout') {

        git 'https://github.com/someone/something.git'

    }

    stage('Build') {

        sh 'build.sh'

    }

    stage('Test') {

        sh 'test.sh'

    }

}



Useful resources when creating pipelines
- Pipeline Syntax-link under Pipeline script step:

- Pipeline script generator
- Global Variable Reference

- https://jenkins.io/doc/book/pipeline/ 
- Pipeline steps reference: https://jenkins.io/doc/pipeline/steps/
- Shared libraries: https://jenkins.io/doc/book/pipeline/shared-libraries/
- Jenkins Javadoc: http://javadoc.jenkins.io/ 

https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/book/pipeline/shared-libraries/
http://javadoc.jenkins.io/


Monitoring infrastructure with Grafana and Graphite
- Report time usage to Grafana 
- Implemented in incremental builds, nightlies, and PR builds
- Python script for GitHub statistics, Groovy for job-statistics
- Useful for discovering trends, and project/infra statistics





Communication on Mattermost
- Instant messaging service provided by CERN
- Open source alternative to Slack
- Improve team-communication
- Chat channels: Topic-oriented
- Bots and service integration: Jenkins, reminder for daily scrum meetings

https://mattermost.web.cern.ch 

https://mattermost.web.cern.ch


Daily Scrum Meetings
- Roundtable each monday: Not enough
- Meetup 10:00 each morning
- What you did yesterday, what are you going today?
- Time-boxing: 90 seconds, meeting ~10 minutes long
- Get better idea of what others are working on
- Get help from peers on known issues



Shipping ROOT in Docker containers
- Users can easily pull the latest version of ROOT
- No compiling needed 
- Built on Ubuntu 16.04 base-image (root-ubuntu16-base)
- Continuous delivery: 

- Each passing incremental build => new snapshot container
- Each passing 6.10-patches nightly => new 6.10 container

- What does this mean?
- Low boundary to try out ROOT
- Easier distribution
- Larger userbase: Any platform where Docker runs is supported
- Users can test out new features as they are developed

- https://root.cern/downloading-root 

https://root.cern/downloading-root


Demo: 
Running ROOT on Windows 10 with Docker



Vision of the future
- More stable build infra

- Disk space issues => Dockerization, push finished builds to Docker registry
- Random crashes/exceptions => 

- More conservative regarding plugins, follow up issues on issue trackers
- Git checkout timeout => Retry count

- Every commit arrives as a pull request
- Ensure this code is understood: Code review
- Does it compile? 
- Does it break any tests?
- Higher quality code, less test breakage, more stability



Vision of the future cont.
- Protected master branch: (https://help.github.com/articles/about-protected-branches/)

- Can’t be force pushed, deleted, or edited through the web
- Commits needs to pass status checks
- Commits must pass review
- Avoid by design that someone pushes a commit that breaks master, or a change that nobody 

else knows about or understands

- Person on shift should revert commits that breaks master
- More focus on process: Retrospective

https://help.github.com/articles/about-protected-branches/


Questions/comments
Big thanks to:

Pere Mato, Danilo Piparo, Vassil Vassilev, Javier Cervantes Villanueva, 

and everyone else on the ROOT team!


