
Improving ROOT
Development Processes

Martin Storø Nyfløtt
Norwegian University of Science and Technology (NTNU Gjøvik)

Supervisor: Pere Mato
07.08.2017

Outline
1. Completely moving ROOT to GitHub
2. Pull requests, @phsft-bot and Jenkins Pipelines
3. Monitoring infrastructure with Grafana and Graphite
4. Communication on Mattermost
5. Daily Scrum Meetings
6. Shipping ROOT in Docker containers
7. Vision for the future

Completely moving ROOT to GitHub
- Early 2017: GitHub serves as a mirror of https://root.cern.ch/git/root.git
- Inconvenient to test and merge PRs
- https://github.com/root-mirror -> https://github.com/root-project
- Modernizing GitHub presence:

- Updating readme.md: Screenshots, links, badges, build instructions
- Better community interaction
- “Modern” open source development

https://root.cern.ch/git/root.git
https://github.com/root-mirror
https://github.com/root-project

Pull requests, @phsft-bot and Jenkins Pipelines
- Pull requests are picked up by a Jenkins web-hook
- Security: Only whitelisted users get automatic building

- Prevent unauthorized usage of our infrastructure

- Customization of platforms, compilers, and CMake flags through @phsft-bot
- Warnings, errors, and failing tests submitted as comments on PRs
- Implemented using Jenkins Pipelines

- https://github.com/root-project/jenkins-pipelines

https://github.com/root-project/jenkins-pipelines

Jenkins Pipelines
- New job type available after Jenkins 2
- Jobs are expressed through a script instead of a form
- Groovy: Simplified Java, without semicolons
- Benefits: Flexibility, version control of pipeline script, persistent between

Jenkins restarts
- Limitations: No matrix support, integration with free-style job plugins may vary

Pipeline example
node('centos7') {

 stage('Checkout') {

 git 'https://github.com/someone/something.git'

 }

 stage('Build') {

 sh 'build.sh'

 }

 stage('Test') {

 sh 'test.sh'

 }

}

Useful resources when creating pipelines
- Pipeline Syntax-link under Pipeline script step:

- Pipeline script generator
- Global Variable Reference

- https://jenkins.io/doc/book/pipeline/
- Pipeline steps reference: https://jenkins.io/doc/pipeline/steps/
- Shared libraries: https://jenkins.io/doc/book/pipeline/shared-libraries/
- Jenkins Javadoc: http://javadoc.jenkins.io/

https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/book/pipeline/shared-libraries/
http://javadoc.jenkins.io/

Monitoring infrastructure with Grafana and Graphite
- Report time usage to Grafana
- Implemented in incremental builds, nightlies, and PR builds
- Python script for GitHub statistics, Groovy for job-statistics
- Useful for discovering trends, and project/infra statistics

Communication on Mattermost
- Instant messaging service provided by CERN
- Open source alternative to Slack
- Improve team-communication
- Chat channels: Topic-oriented
- Bots and service integration: Jenkins, reminder for daily scrum meetings

https://mattermost.web.cern.ch

https://mattermost.web.cern.ch

Daily Scrum Meetings
- Roundtable each monday: Not enough
- Meetup 10:00 each morning
- What you did yesterday, what are you going today?
- Time-boxing: 90 seconds, meeting ~10 minutes long
- Get better idea of what others are working on
- Get help from peers on known issues

Shipping ROOT in Docker containers
- Users can easily pull the latest version of ROOT
- No compiling needed
- Built on Ubuntu 16.04 base-image (root-ubuntu16-base)
- Continuous delivery:

- Each passing incremental build => new snapshot container
- Each passing 6.10-patches nightly => new 6.10 container

- What does this mean?
- Low boundary to try out ROOT
- Easier distribution
- Larger userbase: Any platform where Docker runs is supported
- Users can test out new features as they are developed

- https://root.cern/downloading-root

https://root.cern/downloading-root

Demo:
Running ROOT on Windows 10 with Docker

Vision of the future
- More stable build infra

- Disk space issues => Dockerization, push finished builds to Docker registry
- Random crashes/exceptions =>

- More conservative regarding plugins, follow up issues on issue trackers
- Git checkout timeout => Retry count

- Every commit arrives as a pull request
- Ensure this code is understood: Code review
- Does it compile?
- Does it break any tests?
- Higher quality code, less test breakage, more stability

Vision of the future cont.
- Protected master branch: (https://help.github.com/articles/about-protected-branches/)

- Can’t be force pushed, deleted, or edited through the web
- Commits needs to pass status checks
- Commits must pass review
- Avoid by design that someone pushes a commit that breaks master, or a change that nobody

else knows about or understands

- Person on shift should revert commits that breaks master
- More focus on process: Retrospective

https://help.github.com/articles/about-protected-branches/

Questions/comments
Big thanks to:

Pere Mato, Danilo Piparo, Vassil Vassilev, Javier Cervantes Villanueva,

and everyone else on the ROOT team!

