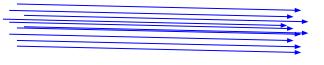
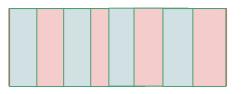


A Customizable GeantV Calorimeter Application

Ryan Schmitz -- University of Minnesota Advised by Sofia Vallecorsa, Andrei Gheata (honorable mention to Mihaly Novak)


Status: Early June

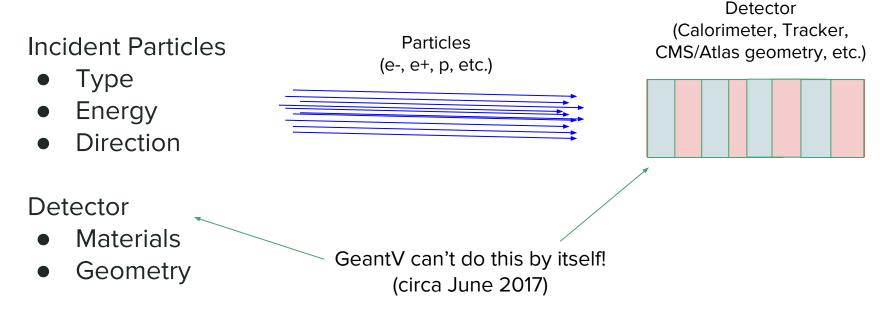
A physics simulation toolkit must support two fundamental user-defined inputs:


Incident Particles

- Type
- Energy
- Direction

Particles (e-, e+, p, etc.)

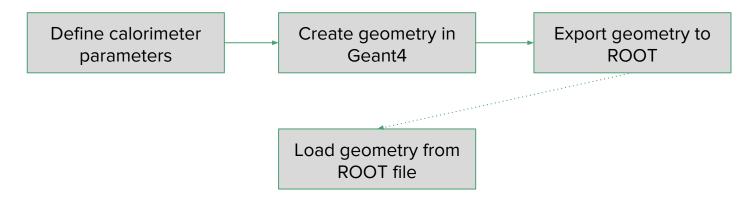
Detector (Calorimeter, Tracker, CMS/Atlas geometry, etc.)

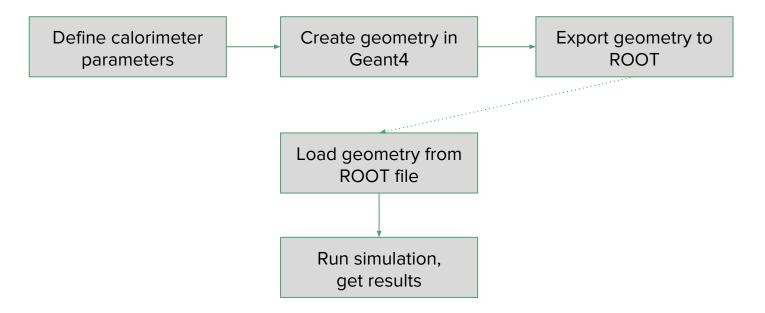


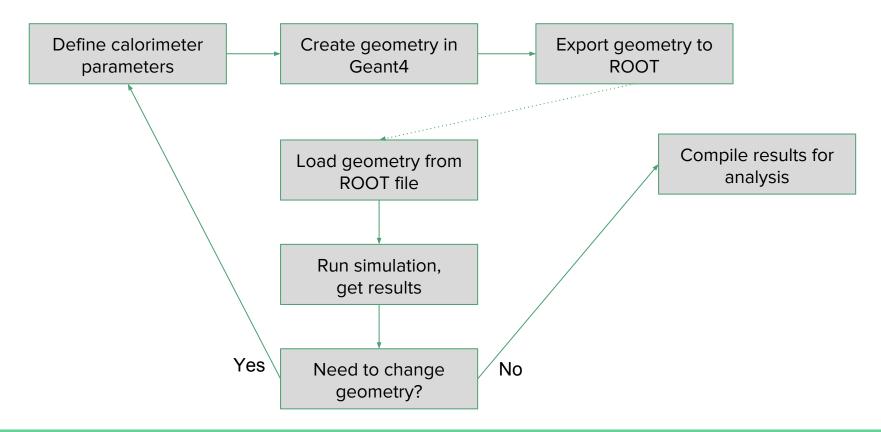
Detector

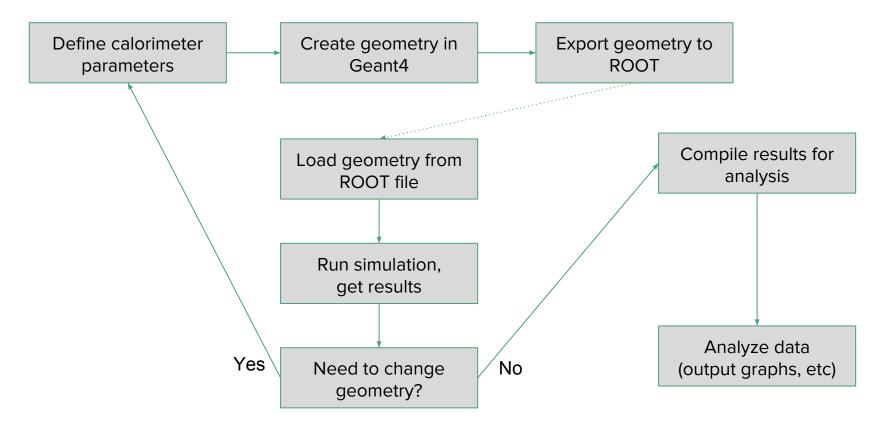

- Materials
- Geometry

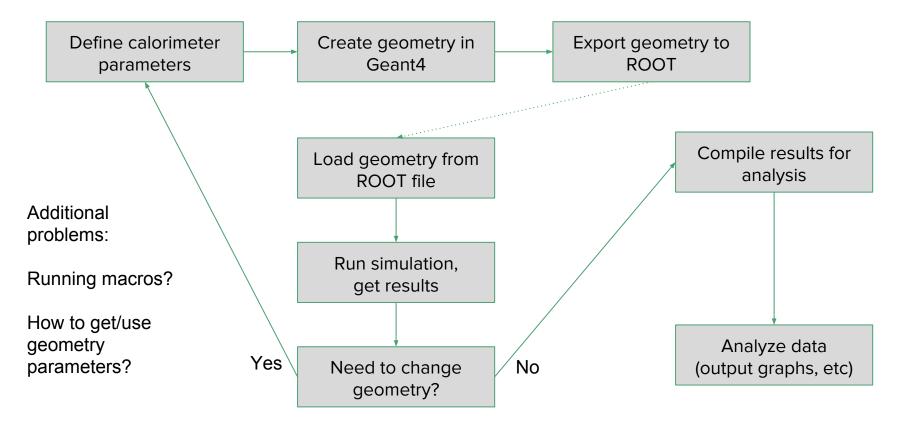
Status: Early June


A physics simulation toolkit must support two fundamental user-defined inputs:




Define calorimeter parameters





Project Goals:

- Provide an implementation of a **user-defined detector**, including geometry and materials
- Allow for this detector to be **fully customizable** without need to recompile
- Use "real physics" (as opposed to tabulated physics)
- Implement **new data structures** which allow for outputs to be associated with individual primaries

GeantV Calorimeter: User Detector Construction

Goal: Develop an example detector construction which can be easily grasped by users familiar with Geant4

	<pre><layer 0=""><layer 1=""><layer 2<="" pre=""></layer></layer></layer></pre>						>						
	I.				1								
	====			=====	=====							=====	===
	П		I		П		I		11		I		11
	11				Н		- I		11		1		11
beam	11	absorber	I	gap	П	absorber	I	gap	11	absorber	I	gap	11
=====>					П				11		1		
	П		I		П				П		Ι		П
	====			=====	=====			=====				=====	===

- Detector construction style inspired by Geant4 TestEm3
 - Includes a CreateMaterials() and CreateGeometry() method, following Geant4 convention
- VecGeom used as basis for geometry creation and placement
 - \circ UnplacedBox = G4Box
 - LogicalVolume = G4LogicalVolume
 - world->PlaceDaughter() = G4PVPlacement
- Inherits from base class, so other detector types can be created

GeantV Calorimeter: User Detector Construction

Detector Features:

- Customizable inputs to geometry
 - Number of layers
 - Number of absorbers per layer
 - Absorber properties (thickness, material)
 - World size, Calo YZ cross-section, etc.
- Use of NIST and/or custom materials
- Detector Regions and Production Cuts
- Get/Set methods to receive detector properties as inputs and pass detector information to other classes (e.g. detThickness -> initial particle gun position)

						=======				.==:
			I							
		abs 1	abs 2		abs 1	abs 2	11	abs 1	abs 2	
			I			I				
	11					1			I	
eam	11					l l	11			
====>										
	П		1			l			I	
	11								1	
	11		1	11					1	
							П			
	П	cell 1	cell 2	11	cell 3	cell 4		cell 5	cell 6	

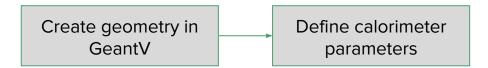
Current GeantV Calorimeter Workflow

Create geometry in GeantV

GeantV Calorimeter: Detector Inputs (Messenger)

Goal: Create interface which mirrors a messenger from Geant4, allowing users to set parameters from a macro

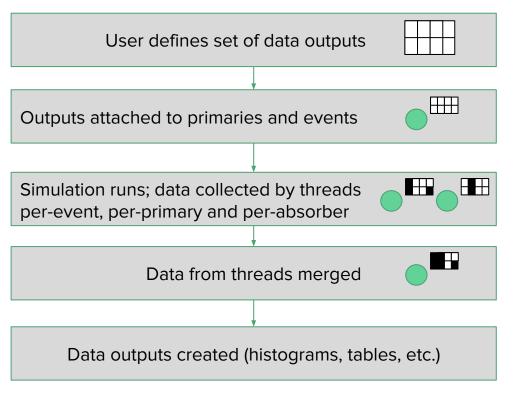
Since we don't have an equivalent to a Geant4 messenger right now, this is handled manually:

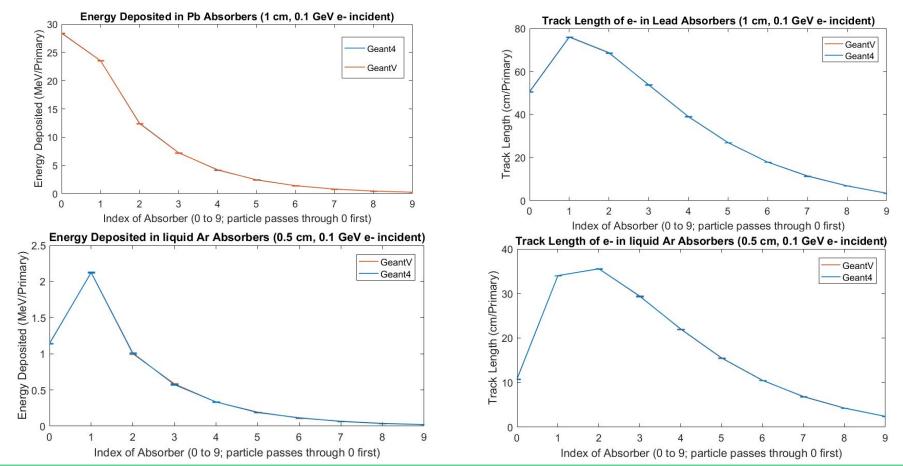

A user can run the application executable
directly from terminal, using arguments to set parameters

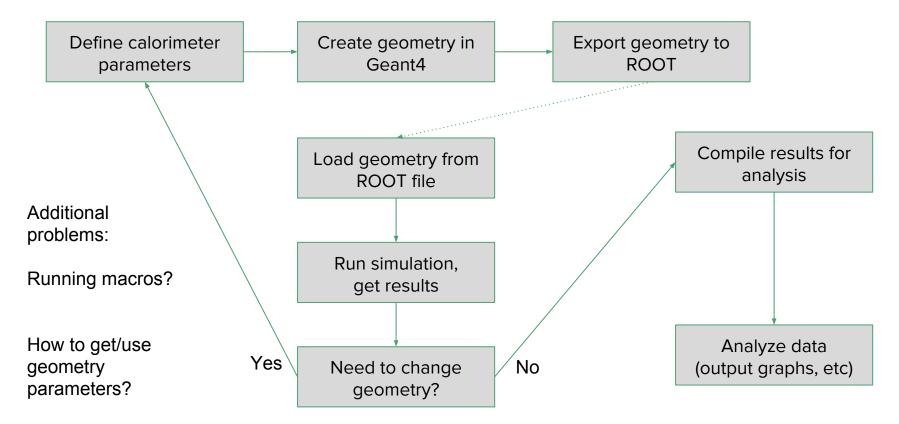
Usage: runAppRP [OPTIONS]

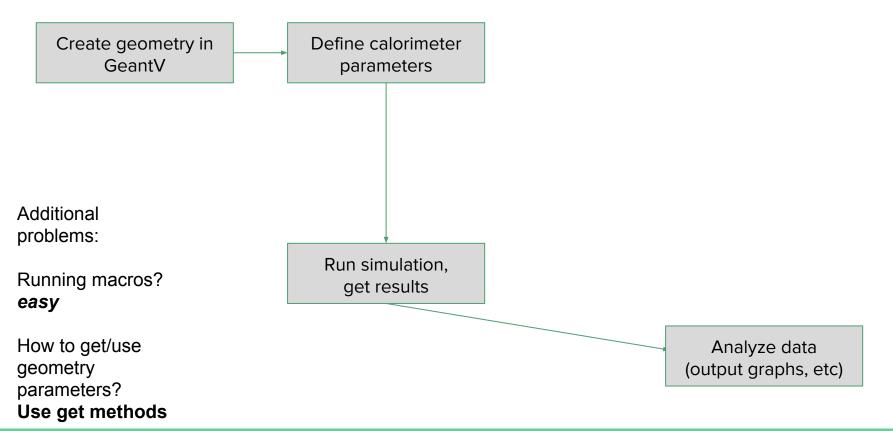
- a	qun-primary-energy qun-primary-energy
- b	gun-primary-type gun-primary-type
- C	det-yzLength det-yzLength
- d	det-numLayers det-numLayers
-e	det-numAbsorbers det-numAbsorbers
- f	det-absorber-1-material det-absorber-1-material
- g	det-absorber-2-material det-absorber-2-material
- i	det-absorber-3-material det-absorber-3-material
- j	det-absorber-1-thickness det-absorber-1-thickness
- k	det-absorber-2-thickness det-absorber-2-thickness
-1	det-absorber-3-thickness det-absorber-3-thickness
- M	config-number-events config-number-events
- N	config-number-primaries-per-event config-number-primaries-per-event
-0	config-number-max-tracks-per-basket config-number-max-tracks-per-basket
- P	config-number-threads config-number-threads
- q	config-number-propagators config-number-propagators
- F	config-number-buffered-events config-number-buffered-events
- S	config-flag-monitor
- t	config-flag-debug
- U	config-flag-coprocessor
- V	config-flag-tbbmode
- W	hist-name hist-name
- X	hist-bin-min hist-bin-min
- y	hist-bin-max hist-bin-max
- Z	hist-bin-number hist-bin-number
- A	det-prod-cut-length det-prod-cut-length
- B	det-prod-cut-energy det-prod-cut-energy
- C	det-prod-cut-gamma det-prod-cut-gamma
- D	det-prod-cut-electron det-prod-cut-electron
- E	det-prod-cut-positron det-prod-cut-positron
- F	particle-process-MSC-step-limit particle-process-MSC-step-limit
- G	particle-process-step-max-value particle-process-step-max-value
- h	help

 A user can run an executable macro in which all of the listed arguments may be set beforehand


Current GeantV Calorimeter Workflow


GeantV Calorimeter: Real-Physics Application


Goal: Create application which uses real physics and data structures which assign data to each primary


- Derived an example application structure created by Mihaly (TestEm5)
- Adapted this for calorimeter application to allow data assignment to variable number of logical volumes
- Also created "legacy" application which outputs data in the old style (mean outputs only)

Output comparison to Geant4 (TestEm3) -- Perfect match

Summary

With an Alpha release on the horizon, GeantV had an urgent need for the ability to define its own detectors

I have developed a fully customizable, self-contained calorimeter application using a user-defined detector, real physics, and new data structures

This example, with its simplified workflow and user-level syntax similar to Geant4, provides an important tool for teaching new users how to create detectors and applications in GeantV