
A Customizable GeantV 
Calorimeter Application
Ryan Schmitz -- University of Minnesota

Advised by Sofia Vallecorsa, Andrei Gheata
(honorable mention to Mihaly Novak)



Status: Early June
A physics simulation toolkit must support two fundamental 
user-defined inputs:

Incident Particles
● Type
● Energy
● Direction

Detector
● Materials
● Geometry

Particles
(e-, e+, p, etc.)

Detector
(Calorimeter, Tracker, 

CMS/Atlas geometry, etc.)



Status: Early June
A physics simulation toolkit must support two fundamental 
user-defined inputs:

Incident Particles
● Type
● Energy
● Direction

Detector
● Materials
● Geometry

Particles
(e-, e+, p, etc.)

Detector
(Calorimeter, Tracker, 

CMS/Atlas geometry, etc.)

GeantV can’t do this by itself! 
(circa June 2017)
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Project Goals:
● Provide an implementation of a user-defined detector, 

including geometry and materials

● Allow for this detector to be fully customizable without 
need to recompile

● Use “real physics” (as opposed to tabulated physics)

● Implement new data structures which allow for outputs to 
be associated with individual primaries



GeantV Calorimeter: User Detector Construction

● Detector construction style inspired by Geant4 TestEm3
○ Includes a CreateMaterials() and CreateGeometry() method, following Geant4 convention

● VecGeom used as basis for geometry creation and placement
○ UnplacedBox = G4Box
○ LogicalVolume = G4LogicalVolume
○ world->PlaceDaughter() = G4PVPlacement

● Inherits from base class, so other detector types can be created

Goal: Develop an example 
detector construction which can 
be easily grasped by users familiar 
with Geant4



GeantV Calorimeter: User Detector Construction

Detector Features:

● Customizable inputs to geometry
○ Number of layers
○ Number of absorbers per layer
○ Absorber properties (thickness, material)
○ World size, Calo YZ cross-section, etc.

● Use of NIST and/or custom materials

● Detector Regions and Production Cuts

● Get/Set methods to receive detector properties as inputs and pass detector 
information to other classes (e.g. detThickness -> initial particle gun position)
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GeantV Calorimeter: Detector Inputs (Messenger)

Goal: Create interface which mirrors a
messenger from Geant4, allowing
users to set parameters from a macro

Since we don’t have an equivalent to a Geant4
messenger right now, this is handled manually:

● A user can run the application executable
directly from terminal, using arguments to set parameters

● A user can run an executable macro in which all of the listed arguments may 
be set beforehand
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GeantV Calorimeter: Real-Physics Application
Goal: Create application which uses 
real physics and data structures which 
assign data to each primary

Derived an example application 
structure created by Mihaly (TestEm5)
● Adapted this for calorimeter 

application to allow data 
assignment to variable number of 
logical volumes

● Also created “legacy” application 
which outputs data in the old 
style (mean outputs only)

User defines set of data outputs

Simulation runs; data collected by threads
per-event, per-primary and per-absorber

Data from threads merged

Data outputs created (histograms, tables, etc.)

Outputs attached to primaries and events



Output comparison to Geant4 (TestEm3) -- Perfect match
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Current Workflow: Defining and testing a calorimeter
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Summary

With an Alpha release on the horizon, GeantV had an urgent need for the 
ability to define its own detectors

I have developed a fully customizable, self-contained calorimeter 
application using a user-defined detector, real physics, and new data 
structures

This example, with its simplified workflow and user-level syntax similar to 
Geant4, provides an important tool for teaching new users how to create 
detectors and applications in GeantV


