
A Customizable GeantV 
Calorimeter Application
Ryan Schmitz -- University of Minnesota

Advised by Sofia Vallecorsa, Andrei Gheata
(honorable mention to Mihaly Novak)



Status: Early June
A physics simulation toolkit must support two fundamental 
user-defined inputs:

Incident Particles
● Type
● Energy
● Direction

Detector
● Materials
● Geometry

Particles
(e-, e+, p, etc.)

Detector
(Calorimeter, Tracker, 

CMS/Atlas geometry, etc.)



Status: Early June
A physics simulation toolkit must support two fundamental 
user-defined inputs:

Incident Particles
● Type
● Energy
● Direction

Detector
● Materials
● Geometry

Particles
(e-, e+, p, etc.)

Detector
(Calorimeter, Tracker, 

CMS/Atlas geometry, etc.)

GeantV can’t do this by itself! 
(circa June 2017)



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT

Load geometry from 
ROOT file



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT

Load geometry from 
ROOT file

Run simulation,
get results



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT

Load geometry from 
ROOT file

Run simulation,
get results

Need to change 
geometry?

Yes

Compile results for 
analysis

No



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT

Load geometry from 
ROOT file

Run simulation,
get results

Need to change 
geometry?

Yes

Compile results for 
analysis

No
Analyze data

(output graphs, etc)



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT

Load geometry from 
ROOT file

Run simulation,
get results

Need to change 
geometry?

Yes

Compile results for 
analysis

No
Analyze data

(output graphs, etc)

Additional 
problems:

Running macros?

How to get/use 
geometry 
parameters?



Project Goals:
● Provide an implementation of a user-defined detector, 

including geometry and materials

● Allow for this detector to be fully customizable without 
need to recompile

● Use “real physics” (as opposed to tabulated physics)

● Implement new data structures which allow for outputs to 
be associated with individual primaries



GeantV Calorimeter: User Detector Construction

● Detector construction style inspired by Geant4 TestEm3
○ Includes a CreateMaterials() and CreateGeometry() method, following Geant4 convention

● VecGeom used as basis for geometry creation and placement
○ UnplacedBox = G4Box
○ LogicalVolume = G4LogicalVolume
○ world->PlaceDaughter() = G4PVPlacement

● Inherits from base class, so other detector types can be created

Goal: Develop an example 
detector construction which can 
be easily grasped by users familiar 
with Geant4



GeantV Calorimeter: User Detector Construction

Detector Features:

● Customizable inputs to geometry
○ Number of layers
○ Number of absorbers per layer
○ Absorber properties (thickness, material)
○ World size, Calo YZ cross-section, etc.

● Use of NIST and/or custom materials

● Detector Regions and Production Cuts

● Get/Set methods to receive detector properties as inputs and pass detector 
information to other classes (e.g. detThickness -> initial particle gun position)



Current GeantV Calorimeter Workflow

Create geometry in 
GeantV



GeantV Calorimeter: Detector Inputs (Messenger)

Goal: Create interface which mirrors a
messenger from Geant4, allowing
users to set parameters from a macro

Since we don’t have an equivalent to a Geant4
messenger right now, this is handled manually:

● A user can run the application executable
directly from terminal, using arguments to set parameters

● A user can run an executable macro in which all of the listed arguments may 
be set beforehand



Current GeantV Calorimeter Workflow

Define calorimeter 
parameters

Create geometry in 
GeantV



GeantV Calorimeter: Real-Physics Application
Goal: Create application which uses 
real physics and data structures which 
assign data to each primary

Derived an example application 
structure created by Mihaly (TestEm5)
● Adapted this for calorimeter 

application to allow data 
assignment to variable number of 
logical volumes

● Also created “legacy” application 
which outputs data in the old 
style (mean outputs only)

User defines set of data outputs

Simulation runs; data collected by threads
per-event, per-primary and per-absorber

Data from threads merged

Data outputs created (histograms, tables, etc.)

Outputs attached to primaries and events



Output comparison to Geant4 (TestEm3) -- Perfect match



June Workflow: Defining and testing a calorimeter

Define calorimeter 
parameters

Create geometry in 
Geant4

Export geometry to 
ROOT

Load geometry from 
ROOT file

Run simulation,
get results

Need to change 
geometry?

Yes

Compile results for 
analysis

No
Analyze data

(output graphs, etc)

Additional 
problems:

Running macros?

How to get/use 
geometry 
parameters?



Current Workflow: Defining and testing a calorimeter

Run simulation,
get results

Analyze data
(output graphs, etc)

Additional 
problems:

Running macros? 
easy

How to get/use 
geometry 
parameters?
Use get methods

Define calorimeter 
parameters

Create geometry in 
GeantV



Summary

With an Alpha release on the horizon, GeantV had an urgent need for the 
ability to define its own detectors

I have developed a fully customizable, self-contained calorimeter 
application using a user-defined detector, real physics, and new data 
structures

This example, with its simplified workflow and user-level syntax similar to 
Geant4, provides an important tool for teaching new users how to create 
detectors and applications in GeantV


