Did we find antimatter in the Universe ?

Is there evidence for baryonic antimatter stars, lumps or domains ?

Do we see \overline{p} or e⁺ from dark matter annihilation or decay ?

Peter von Ballmoos, IRAP Toulouse

antimatter is produced

... sicut in caelo, et in terra

accelerators targets decelerators

Did we find antimatter in the Universe ? yes, lots !

Is there evidence for baryonic antimatter stars, lumps or domains ?

Do we see \overline{p} or e⁺ from dark matter annihilation or decay ?

many high energy processes in astrophysics create e^+ or \overline{p}

so is there space for primordial antimatter or exotic physics ? the difficulty is in modelling the production, transport (and annihilation) of the "secondary" antiparticles

this is a short review of observational evidence for both baryonic antimatter and positrons in the Universe

Peter von Ballmoos, IRAP Toulouse

baryonic antimatter

Positrons in Space

direct positron detection : the typical e⁺ and e⁻ instrument

need for efficient proton rejection : the flux of CR protons in the energy range 1 - 50 GeV exceeds that of positrons by a factor of >10⁴

adapted from M. Schubnell U. Michigan

direct positron detection : the e+ fraction

High energy positrons ($E_{e^+} > 1$ GeV) are observed in cosmic rays

expected at this level from decays following p+p collisions, but ...

the positron to electron ratio shows no observable anisotropy

anisotropy expected from a local source

If the excess has a particle physics origin, it should be isotropic

no significant anisotropy found in either data !

Scenarios for the e+ "anomaly"

illustration by Coutu 2013

- γ -rays converting into e-e+ pairs in the vicinity of the magnetic poles of pulsars
- decay of radioisotopes within a cosmic accelerator (supernova remnant)
- dark matter particles annihilating in the galactic halo ...
- or a revisited model for the production/propagation of secondary e⁺ ...

DM particles annihilating in the galactic halo ...

AMS-02 positron flux (Aguilar et al 2014) and prediction from dark matter annihilation with best fit of annihilation cross section and fractions of lepton final states.

* 560 out of 1164 citations of the *Adriani et al (2009)* Nature paper on the Pamela excess contain 'dark' in the title; 761/1164 mention it in the abstract

"standart" astrophysical scenarios for the e+ "anomaly"

endpoints of stellar evolution

- pulsars
- supernova remnants

Pulsar scenario for the e+ "anomaly"

pulsar contribution is supplied by the 5 "most-powerful" pulsars in the ATNF catalog

positrons

... there are too many cadidate sources !

Galactic Supernovae (Ramaty & Lingenfelter, 1979)

Galactic Supernovae + escape from the disk (Higden et al., 2007)

Hypernovae/GRB explosions in the galaxy (Lingenfelter & Heuter, 1984; Bertone et al., 2006)

Novae (Clayton & Hoyle, 1974; Jose, Coc & Hernanz, 2003)

LMXBs (Prantzos, 2004)

HMXBs / Micro-Quasars (Guessoum et al, 2006)

Wolf-Rayet stars (Dearbourne & Blake, 1985)

Red Giants (Norgaard, 1980)

Pulsars (Sturrock, 1971)

Millisecond pulsars (Wang, 2005; 2006)

Cosmic Ray interactions with matter (Ramaty, 1970)

Light (MeV) dark matter (Boehm et al., 2004)

'Heavy' 500 GeV DM + de-excitation from an excited state (Finkbeiner & Weiner, 2007)

Sgr A* (*Titarchuk & Chardonnet, 2006; Totani, 2007*)

not to speak of strangelets, Q balls, relic particles, decaying, axinos, primordial black holes, superconducting cosmic string, dark energy stars, and moduli, decays, sterile neutrinos, mirror matter, moduli, millicharged fermions, unstable branonsthunderstorms, bananas (40K), yourself ...

neutralinos : $\chi + \chi \rightarrow e^+ + e^-$

```
"Fayet" particle : f + f -> e^+ + e^-
m<sub>f</sub> ~ 10 - 100 MeV => low energy e<sup>+</sup> & no HE \gamma
```


 $m_{\chi} \sim 0.1 - 1 \text{ TeV} => \chi + \chi$ would produce not only e⁺ but also other particles emitting HE γ => not observed with COMPTEL, EGRET

The origin of the galactic e⁺ : two grand families

certain contribution to the e⁺ : ²⁶Al from type II supernovae

The observed 2-3 Mo ²⁶Al in the Galaxy correspond to a production rate of $N_{e+,26} \approx 4.10^{42} e^+ s^{-1}$

possible e⁺ origin : ⁴⁴Ti from type II supernovae

likely e⁺ origin : Type Ia supernovae

Positron production processes	Yields	Ch	Sub-Ch
• ${}^{57}\text{Ni} \rightarrow {}^{57}\text{Co} \ (\tau = 52 \text{ hr}, 40\%)$	⁵⁷ Ni	0.01 - 0.03	0.01 - 0.03
• ${}^{56}\text{Co} \rightarrow {}^{56}\text{Fe} \ (\tau = 111 \text{ d}, 19\%)$	⁵⁶ Co	0.4 - 1.1	0.3 - 0.9
• ${}^{44}\text{Sc} \rightarrow {}^{44}\text{Ca} \ (\tau = 5.4 \text{ hr} \ (87 \text{ yr}), 99\%)$	⁴⁴ Sc	(7-20) x 10 ⁻⁶	(1-4) x 10 ⁻³

Woosley 1997; Woosley & Weaver 1994

Although SNeIa belong to the old population their $(B/D)_{SNeIa} < 1$

e⁺ origin : disk and bulge

 ^{26}Al produced in SNII/Ib & WR ^{26}Al -> $^{26}\text{Mg}+\beta^++\gamma$ (85%)

 $F_{1.8} => M_{26} \sim 2-3 M_* => R_{e+} \sim 4 \times 10^{42} s^{-1}$

⁴⁴Ti produced in SNs ⁴⁴Ti -> ⁴⁴Sc -> ⁴⁴Ca + β (99%) M₄₄ ~ (3±1) x 10⁻⁶ M_{\odot} yr⁻¹ (chem. evol.) => R_{e+} ~ 3 x 10⁴² s⁻¹

(Morphology & esc. fraction unknown)

Obs. disk flux (4-8)×10⁻⁴ ph cm⁻² s⁻¹ 60-100% explained by ²⁶Al Rest (if any) is easily explained by ⁴⁴Ti

but what about the bulge ? need of a pure bulge positron source ?

We are *NOT* observing e⁺ sources !

Source	Process	$E(e^+)^a$	e^+ rate ^b	Bulge/Disk ^c	Comments	
		(MeV)	$\dot{N}_{e^+}(10^{43}~{\rm s}^{-1})$	B/D		
Massive stars: ²⁶ Al	β^+ -decay	~ 1	0.4	< 0.2	$\dot{N}, B/D$: Observationally inferred	
Supernovae: 44 Ti	β^+ -decay	~ 1	0.3	< 0.2	\dot{N} : Robust estimate	
SNIa: ⁵⁶ Ni	β^+ -decay	~ 1	2	< 0.5	Assuming $f_{e^+,esc}=0.04$	
Novae	β^+ -decay	~ 1	0.02	< 0.5	Insufficent e ⁺ production	
Hypernovae/GRB: ⁵⁶ Ni	β^+ -decay	~ 1	?	< 0.2	Improbable in inner MW	
Cosmic rays	p-p	~ 30	0.1	< 0.2	Too high e^+ energy	
LMXRBs	$\gamma - \gamma$	~ 1	\mathcal{Z}	< 0.5	Assuming $L_{e^+} \sim 0.01 \ L_{obs,X}$	
Microquasars (μ Qs)	$\gamma - \gamma$	~ 1	1	< 0.5	e ⁺ load of jets uncertain	
Pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.5	< 0.2	Too high e^+ energy	
ms pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.15	< 0.5	Too high e^+ energy	
Magnetars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.16	< 0.2	Too high e^+ energy	
Central black hole	p-p	High	?		Too high e^+ energy, unless $B > 0.4 \text{ mG}$	
	$\gamma - \gamma$	1	?		Requires e^+ diffusion to $\sim 1 \text{ kpc}$	
Dark matter	Annihilation	1(?)	?		Requires light scalar particle, cuspy DM profile	
	Deexcitation	1	?		Only cuspy DM profiles allowed	
	Decay	1	?		Ruled out for all DM profiles	
Observational constraints	3	<7	2	>1.4		

baryonic antimatter

Evidence for the Existence of Cosmic-Ray Antiprotons (Golden 1979)

46 antiproton candidates observed (rigidity 5.6 -12.5 GV/*c*) (18.3 of them expected to be atmospheric /instrumentationbackground)

The \bar{p}/p ratio is (5.2±1.5) × 10⁻⁴

"Antiproton Flux and Antiproton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with the AMS on ISS"

modelling secondary antiproton production

no primary sources of antiprotons like dark matter annihilations are required

R.Kappl, A.Reinertand, and M.W.Winkler, arXiv:1506.04145

... do not report any signifcant anomaly ...

C.Evoli, D.Gaggero and D.Grasso, arXiv: 1504.05175; JCAP 12 (2015) 039

... no real need for primary sources of antiprotons

V.Poulin, M.Cirelli, P.Salati and P.O.Serpico, JCAP09 (2015) 023; [arXiv:1504.04276].

Anti-Helium detection by AMS-02?

from S. Ting, December 2016, CERN Colloquium The First Five Years of the Alpha Magnetic Spectrometer on the International Space Station https://indico.cern.ch/event/592392

To date we have observed a few events with Z = -2 and with mass around ³He.

signal-to-background ratio of ~ one event in 109

35 billion simulated helium events: MC study shows low background

It will take a few more years of detector verification and to collect more data to ascertain the origin of these events.

secondary origin ? Blum et al 2017 scaling law of nuclear coalescence

resulting cross section is 1-2 orders of magnitude higher than earlier estimates.

Fig : Poisson probability for detecting 1 to 4 ³He events in a 5-yr analysis of AMS02

dark matter annihilation or decay Coogan and Profumo (2017)

normalize fluxes to obtain one antihelium (11.5 - 13.5 GeV/n) in 5 years, models also fit AMS p flux and D limit

eg. for $m\chi = 100 \text{ GeV}$ => cross section $\langle \sigma v \rangle = 7.3 \cdot 10^{-26} \text{ cm}^{-3} \text{ s}^{-1}$ and why not the Holy Grail of baryogenesis?

"The discovery of **a single anti-helium* nucleus** in the cosmic ray flux would definitely point toward the existence of stars and even of entire galaxies made of anti-matter" Salati et al, 1999

"the detection of **a single Z < - 2 nucleus** would imply the existence of anti-stars !" Coppi 2004

"the detection of **one anti-helium nucleus** would be a striking evidence for the existence of anti-stars in our Galaxy" Casadei 2006

* ⁴He, supposedly ...

baryonic antimatter

Energy [MeV]

"matter trail" from the solar system to clusters of galaxies

object	probe	observatory	AM limit
asteroids	solar wind [micro-meteorites cosmic rays]	Fermi	< 4 km Ø if in main-belt
stars within 150 pc	galactic gas (Bondi-Hoyle accretion)	Fermi	f _{AM} ≤ 4·10 ⁻⁵
galactic gas	galactic gas	Fermi	f _{AM} ≤ 10 ⁻¹⁵
intracluster gas	intracluster gas	Fermi	f _{AM} ≤ 10 ⁻⁸ -10 ⁻⁶
primordial matter region	primordial matter region	Comptel	> 1 Gpc

Gamma-rays from π^0 decay in old supernova remnants

IC 443 Supernova remnant Age ~ 10000 years Distance 1.5 kpc

W44 Supernova remnant Age ~ 10000 years Distance 2.9 kpc

Annihilation radiation from the boundaries of matter-antimatter regions, emitted in the early Universe before - and/or - after recombination.

Stecker et al. (1971) solved the cosmological photon transport equation accounting for pair production and Compton scattering at high z.

$$y\frac{\partial I}{\partial y} + \epsilon \frac{\partial I}{\partial \epsilon} = 2I + \frac{y^2 \Omega \nu}{\left[1 + \Omega(y - 1)\right]^{1/2}} \left[A(\epsilon)I - \int_{\epsilon}^{b(\epsilon)} d\epsilon' B(\epsilon | \epsilon')I(\epsilon', y) - \xi^2 \Omega n_c y^3 \nu(T(y)) \frac{\sigma_A(T(y))}{\pi r_e^2} G_A(\epsilon) \right]$$

(1) typical rest-frame spectrum produced by $p-\overline{p}$ annihilation with π° decay

(2) redshifted/scattered p-p
feature => 1-10 MeV range
(early Universe)

early observation of the CGB

Ranger 3 1964 Metzger et al.

ERS-18, 1970 Vette et al.

Apollo 15, 1973 Trombka et al.

Stecker's solution to a cosmological photon transport equation taking into account γ -ray prooduction, absorbtion, scattering and redshift

COMPTEL data (Weidenspointner and Varendorff 2001)

- no pion bump
- transition from a softer to a harder component at ~ 5 MeV
- no deviation from isotropy within statistics

Cosmic diffuse X- and Gamma-

Cohen, De Rújula, and Glashow (1998) to with the fact that CMB is highly uniform. At recombination \overline{n} and n must have be => annihilation at domain boundaries is

hiding away antimatter in compact objects

should the AMS-02 observation of anti-helium be confirmed, we will need to go back and check the gamma-ray sky, as well as carefully searching scars on the CMB

- lumps of antimatter in matter dominated universe ?
- antimatter globular clusters ?
- compact antimatter objects ?

stars, neutron stars, BH are ideal hideways

we then probably would have to find a kind of *symmetry breaking* in the stellar evolution of antimatter vs matter ...

MeV astronomy is Antimatter astronomy

e-ASTROGÁM

ESA M5 proposal for γ -ray astronomy (MeV/GeV domain)

vast effort to gather the entire European γ -ray community answer from ESA this spring

