

Dark Matter Searches at AMS

The collision of cosmic rays with interstellar medium(ISM) will produce \bar{p}
$\mathrm{p}, \mathrm{He}+\mathrm{ISM} \rightarrow \overline{\mathrm{p}}+\ldots$

$$
\chi+\chi \rightarrow \bar{p}+\ldots
$$

The collision of dark matter particles will produce additional \bar{p}

Antiprotons in the Cosmos

The excess of \bar{p} can be accurately measured by AMS The Antiproton Flux is ${ }^{\sim} 10^{-4}$ of the Proton Flux.
A percentage precision experiment requires background rejection close to 1 in a million

AMS on the Space Station

Taking data since May 19, 2011
AMS have collected >115 billion cosmic-rays

AMS will continue to at least 2024

AMS detector calibration at CERN

In accelerator test beams Feb 4-8 and Aug 8-20, 2010
p, e+, e-, π

Alpha Magnetic Spectrometer

Time of Flight (TOF)

Time resolution: 160ps for |Z|=1

Particle mass from TOF and tracker

Ring Imaging Cherenkov detector (RICH)

Event selection for the $\overline{\mathrm{p}}$ analysis

- Primary cosmic ray particle:
- $|R|>1.2$ max cutoff
- TOF:
- Down-going particle
- $\beta>0.3$
- TRD:
- at least 12 hits
- TRACKER:
- Track quality
- $0.8<|\mathrm{Q}|<1.2$
- ECAL:
- Hadron shower shape

Antiproton identification

- The number of antiprotons is determined from template fit.
- To maximize the measurement accuracy, different templates are used in three rigidity region

1. Low rigidity region: Electron, pion background
1.00-4.02 GV The mass calculated from TOF and Tracker
2. Intermediate region: Electron and small amount of pion background
3.67-18.0 GV RICH and The TRD estimator
3. High rigidity region: Electron and charge confusion proton background 16.6-450 GV 2D template in $\left(\Lambda_{\text {TRD }}-\Lambda_{\mathrm{CC}}\right)$ plane

In 4 years, 3.49×10^{5} antiprotons and 2.42×10^{9} protons are selected in the rigidity range $1<|R|<450 \mathrm{GV}$

Antiproton identification at intermediate rigidity

Antiproton identification at high rigidity

In 4 years, >2200 antiprotons above 100 GV

In first 4 years, 3.49×10^{5} antiprotons and 2.42×10^{9} protons are selected in the rigidity range $1<|\mathrm{R}|<450 \mathrm{GV}$ More than 2200 antiprotons above 100 GV

Systematic Errors Study

- Affect the antiproton counting σ_{N}
- Geomagnetic cutoff
- Event selection
- Charge confusion templates
- Affect the acceptance, σ_{A}
- Inelastic cross sections
- Limited MC statistics
- Migration matrix
- Rigidity scale, σ_{R}

Systematic error from charge confusion templates

Systematic error from cross section uncertainty

The inelastic cross sections are used in MC simulation to calculate the effective acceptance

The inelastic cross sections are varied within the error band to obtain the systematic error on the effective acceptance of antiprotons and protons

Error breakdown

Unexpected: The Spectra of Protons and Antiprotons:
If \bar{p} are secondaries, their rigidity dependence should be different than p :

$$
p+I S M \rightarrow \bar{p}+\ldots
$$

Unexpectedly \bar{p} and p have the same rigidity dependence.

Unexpected: The Spectra of Electrons and Positrons: e^{-}and e^{+}have very different rigidity dependence despite the fact that they lose energy equally in the galactic magnetic field.

Unexpected results: the rigidity dependence of $\mathrm{e}^{+}, \overline{\mathrm{p}}, \mathrm{p}$ are identical from ~60 to ~500 GV

Unexpected results: the rigidity dependence of $\mathrm{e}^{+}, \overline{\mathrm{p}}, \mathrm{p}$ are identical from ~60 to ~500 GV
e^{-}has a different rigidity dependence

Antiproton-to-Proton Flux Ratio

Show no rigidity dependence above 60GV

AMS antiproton results and modeling

Recent models of antiproton production

From collision of cosmic rays with interstellar medium

The precision and comprehensive data from AMS allows for the exploration of new phenomena

AMS nuclei identification

Measuring antiproton through the life time of the space station

By collecting more data,
AMS will explore to higher rigidity with better accuracy

Summary

- With the first 4 years AMS data, 3.49×10^{5} antiprotons and 2.42×10^{9} protons has been analyzed from 1 GV to 450 GV
- The antiproton, proton and positron flux show identical rigidity dependence in 60-500 GV
- We will collect more data through the life time of the Space Station, to increase the precision and further explore the high rigidity region

