Cosmology with negative mass

Giovanni Manfredi

Centre National de la Recherche Scientifique Institut de Physique et Chimie des Matériaux de Strasbourg

Jean-Louis Rouet, Université d'Orléans, France Bruce Miller, Texas Christian University, USA Gabriel Chardin, CNRS, France

Outline

1. Motivations: Antimatter and gravity

- The Dirac-Milne Universe
- 2. Newtonian gravity with negative mass
 - Antigravity, Bondi masses, Dirac-Milne scenario
 - Models, linear analysis
- 3. Cosmological structure formation
 - Comoving coordinates
 - Expanding Dirac-Milne universe and structure formation
- 4. Conclusions

Antimatter and gravity — open questions

• Why matter-antimatter imbalance?

- Standard model predicts same amount in the early universe
- Where has all the antimatter gone?

Gravitational behavior of antimatter

- Equivalence principle never tested directly for antimatter
 - ➢ GBAR, ALPHA, AEGIS, ASACUSA, ATRAP
- Fundamental questions for our understanding of gravity
 - ➤ Acceleration of the expanding universe → Dark energy
 - ➤ Matter content of the universe → Dark matter
 - > Alternative theories such as MOND (Modifed Newtonian Dynamics)
- Our understanding of gravity, even at the Newtonian level, may still be very incomplete

Antimatter and gravity

Gravitational behavior of antimatter

- Same as matter (attraction)
- Slightly different (attraction, but different coupling)
- Matter-antimatter repulsion

Dirac-Milne universe

- A. Benoit-Levy and G. Chardin, Astron. Astroph. (2012)
- Matter-antimatter symmetric universe
- Matter and antimatter repel each other
- Linear expansion factor, $a(t) \sim t$ (Milne)
- Solves horizon problem (no inflation)
- No need for dark matter/energy.

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
	B (antiplasma)	—	—	+
antimatter	C (Bondi)	_	+	+
	D (antiinertia)	+	—	+

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	_	—	+
	C (Bondi)	_	+	+
	D (antiinertia)	+	—	+

Antiplasma

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	_	—	+
	C (Bondi)	—	+	+
	D (antiinertia)	+	—	+

Antiplasma

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	—	—	+
	C (Bondi)	_	+	+
	D (antiinertia)	+	—	+

Bondi

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	_	—	+
	C (Bondi)	_	+	+
	D (antiinertia)	+	—	+

Bondi

- Active gravitational mass m_a : $\Delta \phi = 4\pi G \rho = 4\pi G m_a n$
- Passive gravitational mass m_p : ${m F}=-m_p
 abla\phi$
- Inertial mass m_i : $oldsymbol{p}=m_i\dot{oldsymbol{r}}$
- Equation of motion: $\ddot{r} = -(m_p/m_i)\nabla\phi$.

		Active grav. mass	Passive grav. mass	Inertial mass
matter	A (standard)	+	+	+
antimatter	B (antiplasma)	—	—	+
	C (Bondi)	—	+	+
	D (antiinertia)	+	_	+

Bondi: runaway acceleration

Dirac-Milne scenario

- However, the above scenarios are not suited to model the Dirac-Milne universe
- Antiplasma:
 - Does not respect the EP
 - Allows formation of negative mass structures
- Bondi:
 - Requires negative inertial mass to ensure energy conservation
 - Exotic features such as runaway acceleration
- We need a generalization of Newtonian gravity for two particles species

Type of matter	Type of matter	Interaction
+	+	Attraction
_	_	Repulsion
_	+	Repulsion
+	—	Repulsion

• Cannot be realized with a single Poisson's equation

 $\Delta \phi_{+} = 4\pi Gm(+n_{+} - n_{-}), \\ \Delta \phi_{-} = 4\pi Gm(-n_{+} - n_{-})$

- Antimatter spreads
 uniformly
- Matter coalesces in structures

General matrix formalism

$$\Delta \Phi = 4\pi Gm \ \widehat{\mathsf{M}} \,\mathsf{n},$$

Matrix Poisson's equation

$$\Phi = \begin{pmatrix} \phi_+ \\ \phi_- \end{pmatrix}, \quad \mathbf{n} = \begin{pmatrix} n_+ \\ n_- \end{pmatrix}, \quad \widehat{\mathbf{M}} = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \qquad \qquad M_{ij} = \pm 1$$

$$\mathcal{L}(\phi_+,\phi_-) = \frac{\nabla \Phi^T \cdot \nabla \Phi}{8\pi G} + \Phi^T \widehat{\mathsf{M}} \Phi \qquad \text{(can be obtained from Lagrangian)}$$

$$\widehat{\mathsf{M}}_{\mathrm{plasma}} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \widehat{\mathsf{M}}_{\mathrm{Bondi}} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \qquad \widehat{\mathsf{M}}_{\mathrm{DM}} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$$

Expanding universe – Comoving coordinates

One-dimensional geometry

Einstein-de Sitter universe

Einstein-de Sitter universe: zooms

- Continuous generation of gravitational clusters and sub-clusters
- Self-similar structures
- Fractal geometry

Bruce N. Miller and Jean-Louis Rouet, J. Stat. Mech. P12028 (2010).

Dirac-Milne universe

- We show only matter (m>0); antimatter constitutes a low-density repulsive background
- Structure formation stops before the present epoch (t_{now})
- Note: no cosmological constant needed

Dirac-Milne universe: zoom

Matter-density power spectrum

Einstein – de Sitter

Evolution of power spectrum peak

k_{min} in comoving coordinates

Typical cluster size

Conclusions

Newtonian gravity with negative mass

- Standard cases with various choices of m_i, m_a, m_p (Bondi, antiplasma,...)
- Alternative "bimetric" theories \rightarrow Dirac-Milne

• Cosmological structure formation with negative mass

- Comparison between Einstein-de Sitter and Dirac-Milne
- In the Dirac-Milne universe, structure formation stops before 10¹⁰ Gy
- Similar to ΛCDM

