

# A ppb measurement of the antiproton magnetic moment

#### **Christian Smorra**

RIKEN, Ulmer Fundamental Symmetries Laboratory on behalf of the BASE collaboration

Low Energy Antiproton Physics Conference - LEAP 2018 – Paris 12.03.2018















PB



## A parts-per-billion measurement of the antiproton magnetic moment

C. Smorra<sup>1,2</sup>, S. Sellner<sup>1</sup>, M. J. Borchert<sup>1,3</sup>, J. A. Harrington<sup>4</sup>, T. Higuchi<sup>1,5</sup>, H. Nagahama<sup>1</sup>, T. Tanaka<sup>1,5</sup>, A. Mooser<sup>1</sup>, G. Schneider<sup>1,6</sup>, M. Bohman<sup>1,4</sup>, K. Blaum<sup>4</sup>, Y. Matsuda<sup>5</sup>, C. Ospelkaus<sup>3,7</sup>, W. Quint<sup>8</sup>, J. Walz<sup>6,9</sup>, Y. Yamazaki<sup>1</sup> & S. Ulmer<sup>1</sup>

#### Motivation:

- Test of CPT invariance as fundamental symmetry in the Standard Model of particle physics
- Probe for new interactions, e.g. Standard Model Extension or CPT-odd dimension-five interactions
- The mechanism which generates the matter excess in the universe is not understood
- Determination of a fundamental antiparticle property



#### High-precision measurements in Penning traps



$$\frac{\omega_L}{\omega_c} = \frac{g}{2} = \frac{\mu}{\mu_N}$$

H. G. Dehmelt and P. Ekström, Bull. Am. Phys. Soc. 18, 72 (1973). D. J. Wineland and H. G. Dehmelt, J. Appl. Phys. 46, 919 (1975).



RT: Reservoir Trap: Offline source for single antiprotons

PT: Precision Trap: Homogeneous field for frequency measurements

**CT: Cooling Trap**: Fast cooling of the cyclotron motion

**AT: Analysis Trap**: Spin-state detection in a magnetic bottle:  $B_2 = 300000 \text{ T / } m^2$ 



#### **Measurements in the Analysis Trap**



#### **Double Trap Measurement Principle**

High precision due to spatially separated spin state analysis and precision frequency measurements.

Proton trap system (Mainz University)



#### **REQUIREMENT** SINGLE SPIN-FLIP DETECTION

## BSE

#### Spin-state readout in a magnetic bottle



The magnetic bottle couples also the magnetic moment to the radial motion to the axial frequency!  $\frac{\Delta v_z}{v_z} = \frac{1}{4\pi m_p v_z^2} \frac{B_2}{B_0} \left[ hv_+ \left( n_+ + \frac{1}{2} \right) + hv_- \left( n_- + \frac{1}{2} \right) + \frac{g}{2} hv_c n_s \right]$ orbital angular momentum spin angular momentum momentum

$$\frac{dn_{+,-}}{dt} \sim \frac{q^2}{2 m_p h \nu_{+,-}} n_{+,-} \Lambda^2 \langle e_n(t), e_n(t-\tau) \rangle$$

Energy in the mode Electric field noise density

## **BSE** Challenges – High-Fidelity Single Spin-Flip Resolution

observation of antiproton spin transitions with high-fidelity requires ultra-cold particles



• Physics

- heating by rf at a noise density of about  $100 \text{ pV}/\sqrt{\text{Hz}}$  drive radial cyclotron quantum transitions.
- transition rates scale with the cyclotron quantum number.

$$\frac{\mathrm{d}n_{+,-}}{\mathrm{d}t} \approx \frac{q^2}{2m_{\bar{\mathrm{p}}}hv_{+,-}} \Lambda^2 \langle e_\mathrm{n}(t), e_\mathrm{n}(t-\tau) \rangle$$

C. Smorra et al., Phys. Lett. B 769, 1-6 (2017).



#### **Single antiproton spin-transitions**

Physics Letters B 769 (2017) 1-6



Observation of individual spin quantum transitions of a single antiproton



- CrossMark
- Single spin transitions can be identified with a high fidelity (Average spin-state fidelity > 92 %)
- **Enables an antiproton g-factor** measurement with the double-trap method



C. Smorra et al., Phys. Lett. B 769, 1-6 (2017).



#### How to get a cold antiproton?

• Cold particle is prepared by resistive cooling in the PT





A cooling cycle requires ~ 12 h to get a particle below 100 mK!

#### A new multi-trap measurement scheme



# BSE

#### What is the heating rate of the Larmor antiproton?



Mean heating rate < 22 mK / SQRT(cycle)

75 measurement cycles before recooling is needed

Mean Spin-state fidelity > 80%

#### The measurement cycle





#### **Data overview**

 $\Gamma = \frac{\nu_{rf}}{\langle \nu_{c,PT} \rangle}$ 





#### Result





#### **Systematics**

#### Table 1 | Error budget of the antiproton magnetic moment measurement

| oo in roa         |
|-------------------|
| Difference in rac |
|                   |
|                   |
|                   |
| ce in axi         |
|                   |
|                   |

dial energy

ial temperature

Placing the two antiprotons on similar trajectories during the frequency measurements is the limiting systematic effect

Solutions: More homogeneous magnetic field / improved axial temperature measurements



#### **Conclusion I**

Proton magnetic moment (2014):  $g_p/2 = 2.792\ 847\ 350\ (9)$ 

A. Mooser et al., Nature 509, 596-599 (2014).

Antiproton magnetic moment:

CPT invariance holds up to the reached level of precision

$$g_{\bar{p}}/2 = 2.792\ 847\ 344\ 1\ (42)$$
  
 $\left(\frac{g_p}{2} - \frac{g_{\bar{p}}}{2}\right) = -6\ (19)\cdot 10^{-9}$ 

C. Smorra et al., Nature 550, 371-374 (2017).

Proton magnetic moment (2017):  $g_p/2 = 2.792\ 847\ 344\ 62\ (82)$  $\left(\frac{g_p}{2} - \frac{g_{\bar{p}}}{2}\right) = 0.5\ (7.4)\cdot 10^{-9}$ 



### **Examples for CPT-odd interactions**

- Minimal Standard Model Extension
  - Dirac's Equation with lowest order CPT-odd contributions:

$$(i\gamma^{\mu}\partial_{\mu}-a_{\mu}\gamma^{\mu}-b_{\mu}\gamma_{5}\gamma^{\mu}-m)\psi=0.$$

- Non-minimal Standard Model Extension
  - Contains higher dimensional operators and explicit antiparticle coefficients



Figure from V.A. Kostelecky



• Interactions by CPT-odd dimension-five operators:

 $\hat{H}_{\rm int}^A = f^0 \boldsymbol{B} \cdot \boldsymbol{\Sigma},$ 

Y. V. Stadnik et al., Phys. Rev. D 90, 045035 (2014).

• Antiparticle gravitational anomalies:

$$\frac{\omega_{c,\bar{p}}}{\omega_{c,p}} = \frac{m_p}{m_{\bar{p}}} \left(1 + 3(\alpha_g - 1)Uc^{-2}\right)$$

R. J. Hughes, & M. H. Holzscheiter, Phys. Rev. Lett. 66, 854-857 (1991). R. J. Hughes, Contemporary Physics, 34:4, 177-191 (1993).







### **Conclusions and Outlook**

- The antiproton magnetic moment has been measured with 350-fold improved precision
- Improvement is based on single quantum sensitivity and the novel two particle scheme

- We target to improve the limits on BSM physics by another factor 10 to 100
- New methods are being developed
  @ BASE-Mainz (g-factor proton)





### Thank you for your attention!



S. Ulmer RIKEN



H. Nagahma **RIKEN / Tokyo** 



M. Bohman MPI-K / RIKEN



**CERN / RIKEN** 

T. Higuchi

M. Borchert

U - Hannover

**RIKEN / Tokyo** 



A. Mooser

G. Schneider

M. Wiesinger

U - Mainz

U - Mainz

RIKEN



S. Sellner RIKEN



J. Harrington **RIKEN & MPIK** 



N. Schoen U - Mainz



- BASE@CERN: M. Borchert, J. Harrington, T. Higuchi, • H. Nagahama, S. Sellner, T. Tanaka, S. Ulmer
- BASE@Mainz: M. Bohman, <u>A. Mooser</u>, G. Schneider, N. Schön, M. Wiesinger, J. Walz
- BASE@Hannover: C. Ospelkaus
- **BASE** collaborators: K. Blaum, Y. Matsuda, W. Quint, Y. Yamazaki
- Thank you for the funding:











