



## Status of FLAIR – Facility for Low-energy Antiproton and Ion Research @ FAIR

#### www.flairatfair.eu

Eberhard Widmann

LEAP2018

Paris, 12 Mar 2018

Stefan Meyer Institute for Subatomic Physics, Vienna





#### Next-generation Low-energy Antiproton Facility (2004)

| Feature                           | Solution                                     |  |
|-----------------------------------|----------------------------------------------|--|
| Higher intensity                  | Accumulation scheme                          |  |
|                                   |                                              |  |
| Fast and slow extraction          | Coincidence experiments<br>(nuclear physics) |  |
|                                   |                                              |  |
| Cooled beams down to<br>< 500 keV | Storage rings: <b>ELENA</b>                  |  |
|                                   |                                              |  |
| Availability of pbar and RI       | FAIR                                         |  |





## FLAIR @ FAIR - Baseline Technical Report 2005

- High brightness low energy beams
  - two storage rings with 300 keV (LSR) and 20 keV (USR)
  - electron cooling
    - ε ~ 1 π mm mrad
    - Δp/p ~ 10<sup>-4</sup>
- Storage rings with internal targets for collision studies
- Solverapped fast extraction
  - HITRAP facility for HCI & pbar
- Many new experiments
   possible
- same facilities can be used for Factor 100 more pbar trapped or HC topped in gas targets than CERN-AD



FLAIR BTR www.flairatfair.eu





#### Antiprotons at FAIR





- Modularized start version 0-3
  - founded Oct. 2010
  - construction started
- FLAIR: Module 4 with NESR, SFRS-LEB
  - additional funding of ~100 M€ needed
    - in 2005 prizes
- Storage rings are a core feature of FAIR







## Low Energy Antiproton Physics @ FLAI

- Spectroscopy for tests of CPT and QED
  - Antiprotonic atoms (pbar-He, pbar-p), antihydrogen
- Atomic collisions
  - Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions
- Antiprotons as hadronic probes
  - X-rays of light antiprotonic atoms: low-energy QCD
  - X-rays of neutron-rich nuclei: nuclear structure (halo)
  - Antineutron interaction
  - Strangeness –2 production
- Medical applications: tumor therapy



#### FLAIR TDR - E. Widmann CAMOP - Physica Scripta 72, C51-C56 (2005) E. Widmann













#### Status of antimatter CPT tests







## CPT tests and SME

- 1S-2S not sensitive in mSME
- Combination of HFS transitions measured by ALPHA<sup>2</sup> not sensitive to SME
  - See talk by A.
     Vargas earlier today





<sup>1</sup> Smorra, C. *et al. Nature* **550**, 371–374 (2017). <sup>2</sup> Ahmadi, M. *et al. Nature* **548**, 66–69 (2017).



#### Atomic Collision Physics with USR

#### Ionization in single collision by slow

#### ontinrotono

Single Ionization of He by Antiproton Impact



Energy loss

- Benchmark system for theory
- Antiproton does not suffer from charge screening
- Kinematically complete measurements possible with an internal target in a storage ring

see talks by Nordlund and Bondarev We morning





#### **Reaction microscope**





E. Widmann

D. Fischer, FLAIR workshop Heidelberg 2014 https://indico.gsi.de/event/2495/



## p-RI in Traps for Nuclear Structure Study

PS209@LEAR

determination of the halo factor  $(f_{halo})$ 



Momentum distribution of recoil nuclei

- Wave function of outer-most nucleon Charged pion multiplicity
- Distinguish annihilation on p and n
- Halo factors
- Less model dependent than X-rays Antiprotons from FLAIR
- RI from LEB-SFRS gas catcher





#### Cold dense nuclear matter









# Cold, dense hadronic matter by antiproton annihilation in nuclei at

- Signaturation in antikaon-nucleon interaction below threshold
  - Bound states of single and double kaons exist?
- Large cross section for production of 2 K<sup>+</sup> in proton-antiproton annihilation at LEAR
- re-measurement with stopped antiprotons
- 4π detector needed: FOPI
  - also useful for meson

J. Zmeskal et al. Hyperfine Interact 194, 249-254 (200



$$\overline{p} + p \longrightarrow K^+ + K^+ + K^- + K^- - 0.098 \text{ GeV}$$
$$\overline{p} + {}^4He \longrightarrow K^+ + K^+ + [pnnK^-K^-]$$







#### **New developments**

Eberhard Widmann



#### USR: electrostatic storage ring



Part Phys. Nucl. Letters 8 (2011)

| E <sub>min</sub> / E <sub>max</sub> | 20 / 300 keV              |        |
|-------------------------------------|---------------------------|--------|
| Voltages                            | < ± 20 kV                 |        |
| number of pbars at 20               | 1.10 <sup>7</sup>         |        |
| keV<br>CSR@MPI-K Heidelbe           | <del>rg; USR: C. We</del> | lsch C |



**TDR** exists

Cockcroft Institute

E. Widmann



#### HITRAP

- LINAC + RFQD + Penning trap for HCI and pbar
- extraction of eV beams
- precision mass measurements, reaction microscopes for collision studies, etc.
- being commissioned for ESR@GSI

Next talk M. Vogel





## CRYRING: a perfect match for LSR

- LSR is central "work horse" of FLAIR
  - Beam delivery for HITRAP, USR, experiments
- Choice of CRYRING (MSL, Stockholm)
  - Fitting energy range, electron cooling, fast ramping, internal target, low-energy injection from ion source for commissioning.
  - Expertise MSL staff has designed & built CRYRING
  - CRYRING will be contributed by Sweden as in-kind



#### being set up @GSI



E. Widmann



# CRYRING@ESR – a Swedisch in-kind contribution





# GSI/FAIR beamline topology with CRYRING@ESR



ESR fast extraction towards CRYRING

#### CRYRING: First transfer of ions from ESR to CYRING

![](_page_19_Picture_1.jpeg)

From Th. Stöhlker

#### CRYRING / FAIR

#### Scientific goal:

 atomic and nuclear physics of exotic systems at low energy

![](_page_20_Picture_3.jpeg)

EPJ ST Recognized by European Physical Society

Special Topics

#### Physics book: CRYRING@ESR

M. Lestinsky, Y. Litvinov and T. Stöhlker (Eds.)

![](_page_20_Picture_8.jpeg)

eco sciences

🖄 Springer

in print

- circumference: 54 m
- decelerate ions down to 7‰ c
- UHV: p < 10<sup>-11</sup> mbar
- gas and electron targets, COLTRIMS
- e-cooler
- several experiment stations

#### CRYRING in the SIS18 target hall @ GSI/FAIR

From Th. Stöhlker

#### Modularized Start Version of FAIR and beyond

ESR

CR

RESR

![](_page_21_Picture_1.jpeg)

#### FLAIR@ESR "CRYRING, HITRAP USR …

CRYRING@ESR, may enable a much earlier realization of the physics program of FLAIR with slow anti-protons.

#### 30 MeV pbars from RESR (0.8 Tm)

and the second second

2.2 GeV pbars from CR (10 Tm)

From Th. Stöhlker

![](_page_22_Picture_0.jpeg)

#### Scenarios: p̄ rates in MSV from HESR

- Leftover from PANDA
  - few 10<sup>9</sup> per 60 min
  - decelerate & transfer to ESI
    - T. Katayama: 100s, 80% eff.
  - average 5x10<sup>5</sup>/s
  - 5x10<sup>7</sup>/s every 100 s
    - similar to AD-ELENA
  - fast or slow extraction

![](_page_22_Figure_10.jpeg)

T. Katayama et al., Phys. Scr. T166 (2015) 014073

- Low-energy p
  production: full use of HESR
  - CR 13 Tm
  - ESR 10 Tm, but above transition energy
  - deceleration needed to avoid loss: HESR
  - T. Katayama:
    - start with  $10^9 \,\bar{p}$  (stacking for 100 s)
    - deceleration to 30 MeV in HESR&ESR: 8x10<sup>8</sup> p
       /100 s:
    - max\_10<sup>10</sup> p
       (stacking for 1000 s): similar average rate

![](_page_22_Picture_21.jpeg)

![](_page_23_Picture_0.jpeg)

## Summary and Outlook

- Low energy antiprotons offer exciting possibilities for a variety of fields
  - Fundamental symmetries, nuclear & atomic physics
- CERN-AD and ELENA: Antihydrogen
  - essential for continuation of current program
  - Antihydrogen spectroscopy and gravity
- FLAIR: offers further opportunities
  - continuous p
     beams available from CRYRING
    - nuclear and particle physics type experiments (not possible at AD)
  - Availability of radioactive ion beams (RIB) offers new synergies
    - requires independent beam line from (S)FRS
  - Cooled antiprotons down to 20 keV (with USR)
  - higher rates (phase 2, with RESR)
  - Time line: beyond 2025
- Major components of FLAIR are ready or will be soon
  CRYRING can play a major role in future experiments with

![](_page_23_Picture_17.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

#### Thank you

![](_page_25_Picture_0.jpeg)

000

000

![](_page_25_Picture_1.jpeg)

- AEgIS aims at first ever direct measurement of deflection of antihydrogen beam by the Earth's gravitational field
  - Test of WEP with antimatter
- Experiment is ready for beam this year
  - 2014 goal: H production at T=7 K (current min. temperature)
    - later stage  $\rightarrow$  100 mK
  - H beam production
  - Gravity measurement
  - H-HFS spectroscopy

![](_page_25_Picture_10.jpeg)

![](_page_25_Picture_11.jpeg)

![](_page_25_Picture_12.jpeg)

**ERC** Advanced Grant 291242 **H**bar**HFS** www.antimatter.at **PIEW** 

![](_page_25_Picture_14.jpeg)

![](_page_25_Picture_15.jpeg)

![](_page_25_Picture_17.jpeg)

![](_page_25_Picture_18.jpeg)

## **ASACUSA H PRODUCTION**

![](_page_26_Figure_1.jpeg)

## GROUND-STATE HYPERFINE SPLITTING OF H/H

 spin-spin interaction positron - antiproton

000

000

 Leading: Fermi contact term

![](_page_27_Figure_3.jpeg)

29

#### magnetic moment of p

- previously known to 0.3%, 2012 Gabrielse Penning trap 5 ppm PRL 110,130801 (2013)
- •H: deviation from Fermi contact term: -32.77±0.01 ppm
  - finite electric & magnetic radius (Zemach corrections): -41.43±0.44 ppm
  - polarizability of p/ $\bar{p}$  (g<sub>1</sub>, g<sub>2</sub>, PRA 78, 022517 (2068)); <sup>2</sup>  $\Delta \nu$ (Zemach) =  $\nu_{\rm F}$  emaining deviation thresp: 0.86±0.78 pp

E. Widmann

#### HYDROGEN AND ANTIHYDROGEN

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_3.jpeg)

E. Widmann

## **CPT TESTS - RELATIVE & ABSOLUTE PRECISION**

![](_page_29_Figure_1.jpeg)

Atomic physics experiments, especially antihydrogen offer the most sensitive experimental verifications of CPT

E. Widmann

![](_page_29_Picture_4.jpeg)

## ASACUSA CUSP COLLABORATION

![](_page_30_Picture_1.jpeg)

- tomic
- pectroscopy
- nd
- ollisions
- U low
  - ntiprotons

ASACUSA Scientific project

- (1) Spectroscopy of pHe
- (2) p annihilation cross-section
- (3) **H** production and spectroscopy

#### The **H** team

University of Tokyo, Komaba: K. Fujii, N. Kuroda, Y. Matsuda, M. Ohtsuka, S. Takaki, K. Tanaka, H.A. Torii

RIKEN: Y. Kanai, A. Mohri, D. Murtagh, Y. Nagata, B. Radics, S. Ulmer, S. Van Gorp, Y. Yamazaki

Tokyo University of Science: K. Michishio, Y. Nagashima

Hiroshima University: H. Higaki, S. Sakurai

Univerita di Brescia: M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo

Stefan Meyer Institut für Subatomare Physik: P. Caradonna, M. Diermaier, S. Friedreich, C. Malbrunot, O. Massiczek, C. Sauerzopf, K. Suzuki, E. Widmann, M. Wolf, J. Zmeskal

![](_page_30_Picture_19.jpeg)

SIKEM

![](_page_30_Picture_20.jpeg)

![](_page_30_Picture_21.jpeg)

# HFS MEASUREMENT IN AN ATOMIC

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

() ()

00

- spin analysis by sextupole magnet
- low-background high-efficiency detection\_@feantiby@rogen addendum CERN-SPSC 2005-002

![](_page_31_Figure_6.jpeg)

achievable resolution

- better  $10^{-6}$  for T  $\leq 100$  K
- > 100 H
  /s in 1S state into 4π needed
- event rate 1 / minute: background from cosmics, annihilations uptsreams

![](_page_31_Picture_11.jpeg)

![](_page_32_Picture_0.jpeg)

## **RECENT RESULTS: H BEAM**

- H BEAM OBSERVED WITH 5σ
  - n≤43 (field ionization)
  - 6 events / 15 min
- significant fraction in lower n
  - n≲29: 3σ

4 events / 15 min

F. Widmann

**HFS** 

• T ~ few ms N. Kuroda<sup>1</sup>, S. Ulmer<sup>2</sup>, D.J. Murtagh<sup>3</sup>, S. Van Gorp<sup>3</sup>, Y. Nagata<sup>3</sup>, M. Diermaier<sup>4</sup>, S. Federmann<sup>5</sup>, M. Leali<sup>6,7</sup>, C. Malbrunot<sup>4,†</sup>, V. Mascagna<sup>6,7</sup>, O. Massiczek<sup>4</sup>, K. Michishio<sup>8</sup>, T. Mizutani<sup>1</sup>, A. Mohri<sup>3</sup>, H. Nagahama<sup>1</sup>, M. Ohtsuka<sup>1</sup>, B. Radics<sup>3</sup>, S. Sakurai<sup>9</sup>, C. Sauerzopf<sup>4</sup>, K. Suzuki<sup>4</sup>, M. Tajima<sup>1</sup>, H.A. Torii<sup>1</sup>, L. Venturelli<sup>6,7</sup>, B. Wünschek<sup>4</sup>, J. Zmeskal<sup>4</sup>, N. Zurlo<sup>6</sup>, H. Higaki<sup>9</sup>, Y. Kanai<sup>3</sup>, E. Lodi Rizzini<sup>6,7</sup>, Y. Nagashima<sup>8</sup>, Y. Matsuda<sup>1</sup>, E. Widmann<sup>4</sup> & Y. Yamazaki<sup>1,3</sup>

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

![](_page_32_Picture_11.jpeg)

| Table 1  | Summary    | of antihydr | ogen events | detected | by the |
|----------|------------|-------------|-------------|----------|--------|
| antihydr | ogen detec | ctor.       |             |          |        |

|                                                 | Scheme 1 | Scheme 2 | Background |
|-------------------------------------------------|----------|----------|------------|
| Measurement time (s)                            | 4,950    | 2,100    | 1,550      |
| Double coincidence events, N <sub>2</sub>       | 1,149    | 487      | 352        |
| Events above the threshold                      |          |          |            |
| (40 MeV), N <sub>&gt;40</sub>                   | 99       | 29       | 6          |
| Z-value (profile likelihood ratio) ( $\sigma$ ) | 5.0      | 3.2      |            |
| Z-value (ratio of Poisson means) ( $\sigma$ )   | 4.8      | 3.0      | —          |

#### $n \lesssim 43$ $n \lesssim 29$

![](_page_32_Picture_15.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_34_Picture_0.jpeg)

## **H** BEAM HFS RESULT

 $\sigma_1$  transitions •

Fit the data with numerical simulated Bloch equations data

![](_page_34_Figure_4.jpeg)

shift of resonances in magn. field (a) 100 mA (b) 300 mA (c) 500 mA

![](_page_34_Figure_6.jpeg)

![](_page_34_Picture_8.jpeg)

## GRAVITATIONAL ACCELERATION OF ANTIMATTER

- No direct test of CPT
  - Weak equivalence principle
- no experimental test done ever
- Highest precision reachable with neutral antimatter
- •Ultra-cold antihydrogen atoms (µK) from neutral atom traps
  - GBAR (P. Perez)
- low-energy beam
  - AEgIS (M. Doser)

![](_page_35_Figure_9.jpeg)

![](_page_35_Picture_10.jpeg)

![](_page_35_Picture_11.jpeg)

Anti-Apple

Earth

## **AEGIS COLLABORATION**

![](_page_36_Picture_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Picture_3.jpeg)

0

![](_page_36_Picture_6.jpeg)

## AEGIS - Antimatter Experiment: Gravity, Interferometry, Spectroscopy

![](_page_37_Figure_1.jpeg)

- Free fall of  $\bar{p}$ 
  - H production at 100 mK
  - resonant charge exchange with excited positronium
  - acceleration of Rydberg H by Starck effect
  - pulsed production, measure TOF & position

![](_page_37_Picture_7.jpeg)

#### **<b>P** DEFLECTOMETER RESULT

![](_page_38_Picture_1.jpeg)

Pattern observed

- Shift between p̄ and light observed
   Δy=9.8±0.9(stat)±6.4(syst)
  - consistent with residual B, E fields
  - sensitivity of µm reached
  - H beam case

μm

H·HFS

- velocity \*10<sup>-4</sup>
- distance \* 40
- Force 10<sup>-10</sup>

![](_page_38_Figure_10.jpeg)

![](_page_38_Figure_11.jpeg)

Aghion, S. et al. Nature Communications, 5, 4538 (2014)

![](_page_38_Picture_13.jpeg)

![](_page_39_Picture_0.jpeg)

#### **Original layout**

![](_page_39_Figure_2.jpeg)

#### Slow RIB:

SuperFRS -LEB (gas catcher) -LBTL -FLAIR common BTL -Exo+pbar

#### Antiproton:

NESR -CRYRING (LSR) -USR -FLAIR common BTL -Exo+pbar

Highly charged 6MeV/u RIB, 300 keV antiprotons, can be transported from FLAIR to NUSTAR

![](_page_39_Picture_9.jpeg)

![](_page_40_Picture_0.jpeg)

#### Search for strange baryonic matter

![](_page_40_Figure_2.jpeg)

![](_page_40_Picture_4.jpeg)

![](_page_41_Picture_0.jpeg)

Search for dense baryonic matter with double strangeness

ppK<sup>-</sup>K<sup>-</sup> ppK<sup>-</sup> 7.36 fm K<sup>-</sup> 1.5 fm ′<mark>K⁻</mark> **K**р р 1.3 fm 1.90 fm <u>us</u> uud uud ∖ūs ∕ **Strange deuteron?** uuddss Jaffe's H\* di-baryon?

![](_page_41_Picture_4.jpeg)

E. Widmann

![](_page_42_Picture_0.jpeg)

## FLAIR Community

- Austria (SMI Vienna, TU)
- Canada (TRIUMF, York)
- Denmark (Aarhus U)
- France (P. & M. Curie, Paris) Poland (Wa
- Germany (Berlin, GSI, Frankfurt, LMU München, Giessen, MPI Heidelberg, U Heidelberg, Jülich, U Mainz)
- Hungary (Budapest, Debrecen U, ATOMKI)
- India (Kolkata)
- Italy (Brescia, Firenze, Genova)

Spokesperson E.W.

2012 -> K. Blaum (MPI-K HD)

- Japan (Tokyo, Saitama (RIKEN))
- Netherlands (Amsterdam U)
- s) Poland (Warsaw U, Soltan Inst., Cracow)
  - Russia (Moscow, St. Petersburg, Troitsk)
  - Sweden (Stockholm U, Manne Siegbahn Laboratory, Uppsala, ESSS Lund)
  - United Kingdom (Belfast, London, Liverpool, Swansea)
  - USA (Albuquerque, Harvard, Texas A&M, Tallahassee, Rolla)

![](_page_42_Picture_19.jpeg)

BTR 2005: 49 institutions, 144 scientists, 15 countries, needs redefinition: currently 45 institutions, 93 scientists. 15 countries

![](_page_43_Picture_0.jpeg)

## Antiproton production @ CERN

- Threshold 6 mp (5.6 GeV)
- PS: 26 GeV
- Antiprotons of 3.7 GeV/c
- Low-energy beam
  - Accumulation
  - Deceleration
  - Cooling (stochastic, electron)
- 1982 1996 : AAĆ
  - 3 separate rings AC, AA, LEAR
- Since 2000
  - All-in-one machine: AD

![](_page_43_Figure_13.jpeg)

electrons positrons protons antiprotons Pb ions LEP: Large Electron Positron collider SPS: Super Proton Synchrotron AAC: Antiproton Accumulator Complex ISOLDE: Isotope Separator OnLine DEvice PS: Proton Synchrotron LEAR: Low Energy Antiproton Ring

![](_page_43_Picture_16.jpeg)

## • ARAFY C. Cabrielse, Harvard

- ALPHA J. S. Hangst, Aarhus
  - Antihydrogen trapping and 1S-2S
     spectroscopy
- ASACUSA\* R.S. Hayano, Tokyo
  - Antiprotonic atoms, collisions, antihydrogen hyperfine structure
- AEgIS\* M. Doser, CERN
  - Antimatter gravity

00

- GBAR P. Perez, Saclay
  - Antimatter gravity
- BASE S. Ulmer, RIKEN
  - p magnetic moment
- ACE M. Holzscheiter,

Heidelberg HHE logical effects of Farthhilations

![](_page_44_Picture_13.jpeg)

![](_page_44_Picture_14.jpeg)

![](_page_44_Picture_15.jpeg)

![](_page_44_Figure_16.jpeg)

![](_page_44_Figure_17.jpeg)

![](_page_44_Picture_18.jpeg)

## FUNDAMENTAL SYMMETRIES C, P, T

- C: CHARGE CONJUGATION
   PARTICLE ↔ ANTIPARTICLE
- P: PARITY: SPATIAL MIRROR
- •T: TIME REVERSAL
- CPT THEOREM: CONSEQUENCE OF
  - Lorentz-invariance
  - local interactions
  - unitarity

0000

- Lüders, Pauli, Bell, Jost 1955
- ALL QFT OF SM OBEY CPT
- NOT NECESSARILY TRUE FOR STRING THEORY

![](_page_45_Picture_11.jpeg)

 $CPT \rightarrow particle/antiparticle: same masses, lifetimes, g-factors, |charge|,$ 

![](_page_45_Picture_13.jpeg)

E. Widmann

## CPT SYMMETRY & COSMOLOGY

- MATHEMATICAL THEOREM, NOT VALID E.G. IN STRING THEORY, QUANTUM GRAVITY
- POSSIBLE HINT: ANTIMATTER ABSENCE IN THE UNIVERSE
  - Big Bang -> if CPT holds: equal amounts matter/antimatter
  - Standard scenario for Baryogenesis (Sakharov 1967)
    - Baryon-number non-conse
    - C and CP violation

0

- Deviation from thermal equ
- CURRENTLY KNOWN CPV NOT LARGE ENOUGH
   H.H.P.Ser source of baryon asymmetry?

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_47_Figure_0.jpeg)

## H vs. H HFS IN SME

Breit-Rabi diagram

- Splitting of triplet substates in zero field
  - F=1,-1 cross!
- no effect in 0
   field σ<sub>1</sub> transition
- need to measure also π<sub>1</sub>
  - siderial and seasonal variations

![](_page_48_Figure_7.jpeg)

H-HFS E. Widmann

0 0, 00

000000

Humphrey, M., Phillips, D., Mattison, E., Vessot, R., Stoner, R., & Walsworth, R. Testing CPT and Lorentz symmetry with hydrogen masers. Physical Review A, 68(6), 63<mark>807 (</mark>2003)

## ANTIMATTER AND GRAVITY

- ANTIGRAVITY: gmatter = -gantimatter
  - separation of matter and antimatter in Universe
- QUANTUMGRAVITY

- Graviton (S=2)→adds Gravivector (S=1), Graviscalar (S=0)
- simplest categoristatic potential  $V = -\frac{6}{r} \frac{1}{r} \frac{1$
- a: Gravivector, b: Graviscalar
- attractive (matter-matter), +: repulsive: matterantimatter
- matter experiments: |a-b| H•HFSStimatter: a+b

![](_page_49_Picture_9.jpeg)

![](_page_50_Picture_0.jpeg)

## FLAIR: Expected Antiproton Rates

- Production: 10<sup>8</sup> / 4 s
- Deceleration time
  - ~ 20 s
- Limits from space charge in rings:
  - 300 keV: 3 x 10<sup>6</sup> / s
  - 20 keV: 5 x 10<sup>5</sup> / s
  - for 10  $\pi$  mm mrad
  - HITRAP:
    - 0 keV: 1 x 10<sup>6</sup> / s
- In-ring experiments
  - Effective rates:  $10^{10}$   $10^{12}$  / s
- Phase space density much higher than AD
  - AD production rate 5x10<sup>7</sup> / 100 s

#### Assumptions: 10% of accumulated $\bar{p}$

Stefan Meyer Institute

![](_page_50_Figure_20.jpeg)

H. Danared, TP p. 159

![](_page_51_Picture_0.jpeg)

#### New Development I: ELENA @

![](_page_51_Figure_2.jpeg)

| • | Momentum range, MeV/c                            | 100 - 13.7            |
|---|--------------------------------------------------|-----------------------|
|   | Energy range, MeV                                | 5.3 - 0.1             |
|   | Circumference, m                                 | 30.4                  |
|   | Intensity of injected beam                       | 3 × 10 <sup>7</sup>   |
|   | Intensity of ejected beam                        | 2.5 × 10 <sup>7</sup> |
|   | Number of extracted bunches                      | 4                     |
|   | Emittances (h/v) at 100 KeV, π·mm·mrad,<br>[95%] | 4 / 4                 |
|   | $\Delta$ p/p after cooling, [95%]                | 10 <sup>-4</sup>      |
| Ţ | Bunch length at 100 keV, m / ns                  | 1.3/300               |
|   | Required (dynamic) vacuum, Torr                  | 3 × 10 <sup>-12</sup> |

![](_page_51_Picture_4.jpeg)

Penning trap

Approved in 2011, start foreseen 2016

![](_page_52_Picture_0.jpeg)

## New Development II: RESR

- RESR in module 5, but cheap (19 M€ + small modification)
- no stacking, but decelerate in RESR
  - foreseen for AIC, needs electron cooler
  - production rate: 1x10<sup>7</sup> /s
  - cycle time 50-100 s
  - rates like ELENA, but fast extraction

![](_page_52_Figure_8.jpeg)

![](_page_52_Picture_10.jpeg)

![](_page_53_Picture_0.jpeg)

## Many new ideas: Separate injection beam line for

- Early commissioning of the HESR with C protons and ions possible
- Parallel operation of HESR and SFRS for ions
- Can antiprotons be provided by HESR?

![](_page_53_Picture_7.jpeg)

HESR

![](_page_54_Picture_0.jpeg)

#### Current source: AD @ CERN

![](_page_54_Figure_2.jpeg)

![](_page_54_Picture_4.jpeg)

![](_page_55_Picture_0.jpeg)

#### AD @ CERN: start 2000

![](_page_55_Figure_2.jpeg)

#### • All-in-one machine:

- Antiproton capture
- deceleration & cooling
- 100 MeV/c (5.3 MeV)

- Pulsed extraction
  - 2-4 x 10<sup>7</sup> antiprotons per pulse of 100 ns length
  - 1 pulse / 85-120 seconds

![](_page_55_Picture_11.jpeg)

![](_page_56_Picture_0.jpeg)

#### p̄ deceleration in CRYRING

![](_page_56_Figure_2.jpeg)

![](_page_56_Picture_4.jpeg)

![](_page_57_Picture_0.jpeg)

#### OBELIX ('86~'96) [Nucl. Phys., A797, 109 (2007).]

#### ₩<sup>4</sup>He annihilation

topped p @ CERN/LEAR

as target (<sup>4</sup>He@NTP, H<sub>2</sub>@3atm)

#### **Cylindrical spectrometer**

Spiral projection chamber, scintillator barrels, jet-drift chambers

2.4x10<sup>5</sup>/4.7x10<sup>4</sup> events of 4/5-prong in <sup>4</sup>He

20 min = 100/150/300MeV/c for □/K/p

![](_page_57_Figure_9.jpeg)

![](_page_57_Picture_11.jpeg)

![](_page_58_Picture_0.jpeg)

#### Signal of bound states ?

#### OBELIX data

Ap invariant mass

entries/0.0175 GeV

 $\overline{p} + {}^{4}He \rightarrow ppnK^{-} + K^{0}$  $ppnK^{-} + K^{0} \rightarrow \Lambda^{0} + d + K^{0}$ 

Ad invariant mass

![](_page_58_Figure_5.jpeg)

![](_page_58_Picture_6.jpeg)

![](_page_59_Picture_0.jpeg)

#### **OBELIX (CERN/LEAR) data for double strangeness production**

S=-2 strangeness production in  $\overline{p}^4 He$  annihilations at rest G. Bendiscioli, T. Bressani, L. Lavezzi, A. Panzarasa and P. Salvini

| channel                                                                     | events | yield (10 <sup>-4</sup> ) |
|-----------------------------------------------------------------------------|--------|---------------------------|
| $K^+K^+\Sigma^-\Sigma^-p_s$                                                 | 34+/-8 | 0.17+/-0.04               |
| K <sup>+</sup> K <sup>+</sup> Σ <sup>-</sup> Σ <sup>+</sup> nπ <sup>-</sup> | 36+/-6 | 2.71+/-0.47               |
| K+K+Σ-Λn                                                                    | 16+/-4 | 1.21+/-0.29               |
| K+K+K-∕√uu                                                                  | 4+/-2  | 0.28+/-0.14               |

![](_page_59_Picture_4.jpeg)

![](_page_60_Picture_0.jpeg)

![](_page_60_Picture_1.jpeg)

14 October 1999

PHYSICS LETTERS B

Physics Letters B 464 (1999) 323-330

Double strangeness production in  $\overline{pXe}$  annihilation at low energy DIANA Collaboration

V.V. Barmin <sup>a</sup>, V.G. Barylov <sup>a</sup>, V.S. Borisov <sup>a</sup>, G.V. Davidenko <sup>a</sup>,
 A.G. Dolgolenko <sup>a</sup>, C. Guaraldo <sup>b</sup>, V.A. Matveev <sup>a</sup>, G.S. Mirosidi <sup>a</sup>, K. Myklebost <sup>c</sup>,
 M. Olsen <sup>c</sup>, C. Petrascu <sup>b,1</sup>, V.A. Shebanov <sup>a</sup>, N.N. Shishov <sup>a</sup>, A.A. Sibirtsev <sup>d</sup>,
 L.I. Sokolov <sup>a</sup>, B.S. Volkov <sup>a</sup>, N.K. Zombkovskaya <sup>a</sup>

<sup>a</sup> Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia

<sup>b</sup> Laboratori Nazionali di Frascati dell' INFN, C.P. 13, I-00044 Frascati, Italy

<sup>c</sup> Physics Department, University of Bergen, N-5007 Bergen, Norway

<sup>d</sup> Institut für Theoretische Physik, Universität Giessen, D-35392 Giessen, Germany

![](_page_60_Picture_12.jpeg)

33 double kaon events were found yield ~  $10^{-4}$ 

![](_page_61_Picture_0.jpeg)

## Strangeness S=-2 production

We propose to use the antiproton annihilation reaction on light nuclei to produce and study double-strange nuclei in reactions such as:

$$\overline{p} + p \rightarrow K^- + K^- + K^+ + K^+$$

energetically forbidden at rest (-98 MeV)

$$\overline{p} + A \longrightarrow K^+ + K^+ + [K^-K^-pp(A-3)]$$

bound state formation  $\Box E_{\rm B} \sim 100 \, {\rm MeV}$ 

![](_page_61_Picture_6.jpeg)

2 K<sup>+</sup> indicate a strong binding of the K<sup>-</sup> pair in the nucleus

![](_page_62_Picture_0.jpeg)

## Search for antikaon bound systems performing an "exclusive" measurement

#### formation process:

 $\overline{p} + {}^{4}He \rightarrow K^{+} + K^{0} + X = [ppnK^{-}K^{-}]$ 

$$\rightarrow K^+/\pi^+/\pi^-$$

decay processes:  

$$[ppnK^{-}K^{-}] \rightarrow n + \Lambda + \Lambda$$

$$\rightarrow n + (p + \pi^{-}) + (p + \pi^{-})$$

$$[ppnK^{-}K^{-}] \rightarrow p + \Lambda + \Sigma^{-}$$

$$\rightarrow n + (p + \pi^{-}) + (n + \pi^{-})$$

$$\rightarrow p/\pi^+/\pi^-/n$$

How to Measure?

Sakuma et al. *Hyp. Int. 213*, 51 (2011).

we focus the reaction:  $\overline{p} + {}^{3}He \rightarrow K^{+} + K^{0} + X \quad (X = K^{-}K^{-}pp)$ 

(although K-K-pp decay modes are not known at all,) we assume the mostkenergetig fayored decay mode:

final state = K<sup>+</sup>K<sup>0</sup>⊄⊄

We can measure the K<sup>-</sup>K<sup>-</sup>pp signal <u>exclusively</u> by detection of all particles, K<sup>+</sup>K<sup>0</sup> $\not\subset \not\subset$ , using K<sup>0</sup> $\rightarrow$   $\Box^+\Box^-$  mode

> wide-acceptance detector is important

#### **Expected Kinematics**

Sakuma et al. *Hyp. Int. 213,* 51 (2011).

#### K+K<sup>0</sup>X momentum spectra

$$\overline{p} + {}^{3}He \longrightarrow K^{+} + K_{S}^{0} + K^{-}K^{-}pp$$

**assumptions:** widths of K<sup>-</sup>K<sup>-</sup>pp = 0 isotropic decay

![](_page_64_Figure_5.jpeg)

In the K<sup>-</sup>K<sup>-</sup>pp production channel, the kaons have very small momentum of up to 300MeV/c, even if B.E.= MeV. low mass detectors

~200MeV/c  $\Box$  from K<sup>0</sup><sub>S</sub>, ~700MeV/c p from  $\not\subset$ , ~150MeV/c  $\Box$ <sup>-</sup> from  $\not\subset$ 

![](_page_65_Picture_0.jpeg)

#### Production of S=−2: ∈

![](_page_65_Figure_2.jpeg)

![](_page_65_Picture_3.jpeg)

![](_page_66_Picture_0.jpeg)

#### Current source: AD @ CERN

![](_page_66_Figure_2.jpeg)

![](_page_66_Picture_4.jpeg)

![](_page_67_Picture_0.jpeg)

#### AD @ CERN: start 2000

![](_page_67_Figure_2.jpeg)

#### • All-in-one machine:

- Antiproton capture
- deceleration & cooling
- 100 MeV/c (5.3 MeV)

- Pulsed extraction
  - 2-4 x 10<sup>7</sup> antiprotons per pulse of 100 ns length
  - 1 pulse / 85-120 seconds

![](_page_67_Picture_11.jpeg)

![](_page_68_Picture_0.jpeg)

#### New development: ELENA @ CERN-AD-Decelerator after AD 5 MeV $\rightarrow$ 100 keV

![](_page_68_Figure_2.jpeg)

| Energy range, MeV                                                 | 5.3 - 0.1             | 100 keV                                |
|-------------------------------------------------------------------|-----------------------|----------------------------------------|
| Intensity of ejected beam                                         | 1.8 × 10 <sup>7</sup> | 1 pulse every                          |
| ε <sub>x,y</sub> of extracted beam, π·mm·mrad, [95%],<br>standard | 4 / 4                 | ~100 s:<br>average 10 <sup>5</sup> p/s |
| $\Delta$ p/p of extracted beam, [95%], standard                   | 8-10-3                |                                        |

![](_page_68_Picture_5.jpeg)

![](_page_69_Picture_0.jpeg)

#### AD & ELENA area and experiments

![](_page_69_Picture_2.jpeg)

Stefan Meyer Institute

![](_page_69_Picture_4.jpeg)