THE HITRAP FACILITY FOR DECELERATION AND TRAPPING OF HIGHLY CHARGED IONS AND ANTI-PROTONS

MOTIVATIONAL BACKGROUND

What makes highly charged ions (HCI) interesting ? Why do we want slow HCI? (keV down to μeV)

A lot of things, mainly the extreme field strength in their vicinity -> spectroscopy, magnetic moments, reactions and collisions...

For a number of reasons, mainly for trapping and low-energy reactions -> precision measurements,

reaction microscopy,...

H.-J. Kluge et al., Advances in Quantum Chemistry **53**, 83 (2007)

HIGHLY CHARGED IONS

E < 10¹⁶ V/cm B < 10⁵ T

Hydrogen Z=1

Hydrogen-like ion Z=2-92 (also Z>92: unstable species)

PRINCIPAL TRANSITIONS E ~ Z² (τ ~ Z⁻⁶) HYPERFINE TRANSITIONS E ~ Z³ (τ ~ Z⁻⁹) optical for high Z FINE STRUCTURE TRANSITIONS E ~ Z⁴ (τ ~ Z⁻¹²) optical for medium Z

HIGH POTENTIAL ENERGY, BUT ALSO : IONIZATION THRESHOLD $\mathsf{E} \sim \mathsf{Z}^2$

HIGHLY CHARGED ION PRODUCTION @ GSI

HIGHLY CHARGED IONS FOR HITRAP

GSİ

HITRAP LAYOUT

PICTURE OF THE DECELERATION STAGES

ION BUNCH DECELERATION SO FAR

NEW COOLING TRAP UNDER COMMISSIONING

LOW-ENERGY BEAMLINE @ keV / q

EXPERIMENTAL AREA: OVERVIEW

TRAP EXPERIMENTS

currently: HCI production, cooling and storage for weeks pressure ~ 10⁻¹⁶ mbar

TECHNISCHE UNIVERSITÄT DARMSTADT

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

currently: upgrading Imperial College London

TECHNISCHE UNIVERSITÄT DARMSTADT

currently: commissioning

seit 1558

Friedrich Schiller Universität Jena

High-Intensity Laser Ion-Trap Experiment

FAIR AND ANTI-PROTONS

CONCEPTS FOR ANTI-PROTONS AT ESR AND HITRAP

SUMMARY

HITRAP Decelerator

- Deceleration from production to 6 keV/u achieved
- Trapped offline-ions, trapped electrons, electron cooling
- Efficient low-energy beam transport to experiments
- Next step: new cooling trap, HCI beam times in 2018/19
- o Intended to also work with anti-protons @ FAIR

Current Experiments

- ARTEMIS: HCI storage and cooling, operational
- SPECTRAP: mK ion crystals for cooling of HCI, upgrade
- HILITE: offline measurements, commissioning

THE FAIR FACILITY UNDER CONSTRUCTION

THANK YOU

PENNING TRAPS AS COMMON DENOMINATOR

ARTEMIS

Frans Penning (1936) John Pierce (1949) Hans Dehmelt (1961)

G 55 11

HILITE

ARTEMIS

double-resonance spectroscopy of highly charged ions aim: magnetic moments (g-factors) of bound electron

ELECTRON IN EXTREME FIELDS: MAGNETIC MOMENT

Apart from relativity, significant contributions to g come from QED and the nucleus

Test of QED in strong fields, higher-order Zeeman effects, Nuclear information in absence of shielding,...

ARTEMIS

SPECTRAP

optical spectroscopy of highly charged ions aim: FS and HFS transition energies and lifetimes in HCI

HERE: ION CRYSTALS FOR SYMPATHETIC COOLING

SPECTRAP SETUP

Z. Andelkovic et al., PRA 87 (2013) 033423

G 55 11

ION CRYSTAL PRODUCTION

Mg⁺ CRYSTAL: N ~ $10^4 - 10^5$

T. Murböck et al., PRA 94, 043410 (2016)

SHELL STRUCTURE:

Application: Sympathetic Cooling of HCI

High-Intensity Laser Ion-Trap Experiment (HILITE)

aim: provide well-defined ion targets for high-intensity lasers, non-destructive reaction analysis

HILITE SETUP

Penning trap in a dry superconducting magnet:

high operation stability, high resolution, yet easy transport and flexible use

HILITE

some examples:

(non-linear) ionization processes: cross sections X^{a+} to X^{b+}

highly charged ion reactions e.g. electron capture from residual gas

fragmentation studies e.g. fullerene stability

laser diagnostic focal position, intensity, beam parameters

