
THE HITRAP FACILITY FOR DECELERATION AND TRAPPING 

OF HIGHLY CHARGED IONS AND ANTI-PROTONS

SPECTRAP



MOTIVATIONAL BACKGROUND

• What makes highly charged ions (HCI) interesting ?

• Why do we want slow HCI? (keV down to meV)

A lot of things, mainly the 

extreme field strength in their vicinity

-> spectroscopy, magnetic moments, 

reactions and collisions...
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nuclear charge Z

For a number of reasons, mainly for 

trapping and low-energy reactions

-> precision measurements, 

reaction microscopy,... 

H.-J. Kluge et al.,

Advances in Quantum Chemistry 53, 83 (2007) 



HIGHLY CHARGED IONS

Hydrogen  Z=1

Hydrogen-like ion  Z=2-92

PRINCIPAL TRANSITIONS E ~ Z2      ( t ~ Z-6 )

HYPERFINE TRANSITIONS  E ~ Z3      ( t ~ Z-9 )  optical for high Z

FINE STRUCTURE TRANSITIONS E ~ Z4 ( t ~ Z-12 ) optical for medium Z

E < 1016 V/cm

B < 105 T

HIGH POTENTIAL ENERGY, BUT ALSO : IONIZATION THRESHOLD E ~ Z2

(also Z>92: 

unstable species)



HIGHLY CHARGED ION PRODUCTION @ GSI
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HIGHLY CHARGED IONS FOR HITRAP
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HITRAP LAYOUT

ARTEMIS

SPECTRAP

HILITE



PICTURE OF THE DECELERATION STAGES
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ION BUNCH DECELERATION SO FAR

10 m

500 keV/u

6 keV/u

BUNCHER IH RFQ

TRAP

designed to work with |m/q|<3 HCI, anti-protons



Old Design

New Design

NEW COOLING TRAP UNDER COMMISSIONING



LOW-ENERGY BEAMLINE @ keV / q

BEAM PROFILE AFTER 10m
HITRAP LOW-ENERGY BEAMLINE

beam energy 2-10 keV/q

beam size ~ 5 mm

transport efficiency up to 95%

charge states up to ~ 44+

ion species 

(DREEBIT)

Ar, Xe, Kr, O, 

C, K, Ca, ...



EXPERIMENTAL AREA: OVERVIEW

F. Herfurth "The linear decelerator HITRAP"
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TRAP EXPERIMENTS

magnetic moments 

of bound electrons and nuclei

currently: HCI production, 

cooling and storage for weeks

pressure ~ 10-16 mbar

SPECTRAP

precision spectroscopy of highly charged ions

ion cooling from keV to meV in seconds

HCI cooling
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conical Penning trap

Friedrich Schiller

Universität Jena

currently: commissioning

currently: upgrading



FAIR AND ANTI-PROTONS

= INTERNATIONAL FACILITY FOR ANTIPROTON AND ION RESEARCH

SET OF EXTENSIONS 

TO MAKE AVAILABLE

HIGHER ION ENERGIES, 

INTENSITIES, 

and ANTI-PROTONS

“The high intensity of secondary beams produced

will make it possible to […] extend the 

physics programme of HITRAP to novel 

experiments with trapped radioactive ions and, 

of course, with trapped antiprotons.“

„HITRAP: A facility at GSI for highly charged ions “,

H.-J. Kluge et al.,

Advances in Quantum Chemistry 53, 83 (2007) 



CONCEPTS FOR ANTI-PROTONS AT ESR AND HITRAP

T. Katayama et al., Phys. Scr. T166 (2015) 014073



SUMMARY

HITRAP Decelerator

o Deceleration from production to 6 keV/u achieved

o Trapped offline-ions, trapped electrons, electron cooling 

o Efficient low-energy beam transport to experiments

o Next step: new cooling trap, HCI beam times in 2018/19

o Intended to also work with anti-protons @ FAIR

Current Experiments

o ARTEMIS: HCI storage and cooling, operational

o SPECTRAP: mK ion crystals for cooling of HCI, upgrade

o HILITE: offline measurements, commissioning



THE FAIR FACILITY UNDER CONSTRUCTION

THANK YOU



THANK YOU



PENNING TRAPS AS COMMON DENOMINATOR

SPECTRAP

ARTEMIS
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ARTEMIS

double-resonance spectroscopy of highly charged ions

aim: magnetic moments (g-factors) of bound electron



ELECTRON IN EXTREME FIELDS: MAGNETIC MOMENT

Apart from relativity, significant contributions to g come from QED and the nucleus

Test of QED in strong fields, higher-order Zeeman effects,

Nuclear information in absence of shielding,...



ARTEMIS

currently: 

in-trap ion production

and cooling

storage time: weeks

pressure ~ 10-16 mbar
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SPECTRAP

SPECTRAP

optical spectroscopy of highly charged ions

aim: FS and HFS transition energies and lifetimes in HCI

HERE: ION CRYSTALS FOR SYMPATHETIC COOLING



SPECTRAP SETUP

Z. Andelkovic et al., PRA 87 (2013) 033423 



ION CRYSTAL PRODUCTION

Mg+ CRYSTAL: N ~ 104 - 105

T. Murböck et al., PRA 94, 043410 (2016)

Application:

Sympathetic Cooling

of HCI

NUMBER OF IONS

SHELL STRUCTURE:

FROM MK TO mK 

in 30 sec



High-Intensity Laser Ion-Trap Experiment (HILITE)

aim: provide well-defined ion targets for high-intensity lasers, 

non-destructive reaction analysis

Friedrich Schiller

Universität Jena



HILITE SETUP

Penning trap in a dry superconducting magnet:

high operation stability, high resolution, yet easy transport and flexible use

TRAP:

4 Kelvin

0...6 Tesla

Control over ion cloud

Position

Density

Shape

Composition



HILITE

(non-linear) ionization processes: 

cross sections Xa+ to Xb+

highly charged ion reactions e.g. 

electron capture from residual gas

fragmentation studies e.g. 

fullerene stability

laser diagnostic

focal position, intensity,

beam parameters

some examples:


