

Exotic Nuclei & Antiprotons

H. de Gerseem, N. Marsic, W. Müller, <u>A. Obertelli</u> TU Darmstadt

LEAP 2018 March 12th-16th, 2018

Outline

- 1) Why antiprotons for short-lived nuclei?
- 2) The concept
- 3) Agenda, collaboration
- 4) Magnet design

Radioactive nuclei

3

Neutron skins and halos

X. Vinas et al., Eur. Phys. J A 50, 27 (2014)

neutron skins and halos have been extensively studied

- structure phenomenon difficult to characterise and to measure accurately
- skins also motivated by the Nuclear Equation of State (EOS)
- Halos not known well (at all) beyond mass 15, while predicted

What would be an ideal probe?

- **isospin** sensitivity: selectivity of protons and neutrons
- Sensitivity to the **tail** of the nuclear density, where the skin/halo are
- □ effective for short-lived and low-rate production nuclei

Low-energy antiprotons as a probe for radioactive nuclei!

[was proposed at FAIR, see FLAIR presentation by E. Widmann]

Brookhaven NL: W. M. Buggs et al., Phys. Rev. Lett. 31, 475 (1973)

Antiproton-proton, $\overline{p}p$ [43]						
Pion final state	Branching ratio					
$\pi^{0}\pi^{0}$	0.00028					
$\pi^{0}\pi^{0}\pi^{0}$	0.0076					
$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.03					
$\pi^{+}\pi^{-}$	0.0032					
$\pi^{+}\pi^{-}\pi^{0}$	0.069					
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.093					
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.233					
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.028					
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.069					
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	0.196					
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	0.166					
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	0.042					
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	0.021					
$\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-\pi^0$	0.019					

Antiproton-neutron, pn [46]

Pion final state	Branching ratio
$\pi^{-}\pi^{0}$	0.0075
$\pi^{-}k\pi^{0} \ (k > 1)$	0.169
$\pi^{-}\pi^{-}\pi^{+}$	0.023
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}$	0.17
$\pi^{-}\pi^{-}\pi^{+}k\pi^{0} (k > 1)$	0.397
$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}$	0.042
$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}\pi^{0}$	0.12
$\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}k\pi^{0} (k > 1)$	0.066
$\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{+}\pi^{+}k\pi^{0} \ (k \ge 0)$	0.0035

PUMA: Pbar Unstable Matter Annihilation

- □ Transport antiprotons from ELENA (CERN) to ISOLDE
- Device to be build (funded from 01/2018, for 5 years)
- □ First experiment at ISOLDE foreseen in 2022
- □ Pioneer experiment with antiprotons as a probe for short-lived nuclei

PUMA: a magnetic bottle for antiprotons

(FSI corrections, statistics)

Physics cases

- capture cross section is **10**⁻¹⁶ **cm**² (100 Mbarns, 100eV relative E)
- 10⁷ cm⁻² antiproton « target », 6-cm long
- trapping time of 10 ms
- **1000 pps production rate** of radioactive Ion (20 ions / bunch, every 20 ms)
- under these specific conditions: annihilation rate of **few per minute** (few 10² / day)

Challenges

- Cryostat suited for ultra-high vacuum (<10⁻¹⁷ mbar) and insertion of low-energy ions
 - sealed by thin entrance window (20 nm, proposed solution Si3N4)
 - 4K
 - ions & antiprotons cooling
 - C. Smorra et al., Int. Jour. Mass. Spec. 189, 19 (2015)
- Trapping of 10⁹ antiprotons
- **Transportable trap** that meets contrains from environment (GBAR / ISOLDE, costs) C.H. Tseng and G. Gabrielse, Hyperfine Interactions **76**, 381 (1993)
- Final state interaction correction uncertainties M. Wada, Y. Yamazaki, Nucl. Instr. Meth. B 214 (2004)

Agenda and collaboration

PUMA phases

- 2018-2020: 2 years
 - solenoid magnet
 - trap & cryostat
 - detection
- 2020-2021: 2 years
 - operation
- 2022-...: 1 year ++
 - installation at CERN
 - first measurements

Milestones 2018: Lol to CERN

2020: Proposal to CERN

2021: Validation with protons / stable ions at TU Darmstadt

2022: Trapping of antiprotons First ion-antiproton annihilations

Collaboration (today): TU Darmstadt, RIKEN, CEA, IPN Orsay **Scale**: 6 staff (2.5 FTEs), 2 PD, 1 PhD (+ 2 more positions to come)

⊨–A [see presentation B. Mansoulié] IKP, TU Darmstadt 13.03.2018 I LEAP 2018 A. Obertelli 14

Free fall location

(to be fine tuned)

Photo-detachment

Measurement of free fall

any **B** gradient creates a force due to magnetic moment of positron

0.02 Gauss / m = 0.1% accuracy

Produce ion H⁺

GBAR @ ELENA

1011

Positron LINAC

Positronium cloud

TECHNISCHE UNIVERSITÄT DARMSTADT

Solenoid magnet location and constrains

4 Tesla, active & passive shielding Transportable

NbTi, 200 A / mm²

Active region (warm bore): Length = 800 mm Diameter = 210 mm

Homogeneity: <0.2% in trapping region <2% in detection region

Residual field at free fall region: Gradient < 0.2 G / m at 3 meters Field < 2 G at 3 meters

TECHNISCHE

UNIVERSITÄT DARMSTADT

Solenoid magnet design

13.03.2018 I LEAP 2018 A. Obertelli IKP, TU Darmstadt 16

Solenoid magnet design

TECHNISCHE UNIVERSITÄT DARMSTADT

Field homogeneity shown for +- 0.11%

Residual magnetic field

IKP, TU Darmstadt 13.03.2018 I LEAP 2018 A. Obertelli

18

Field gradient

Summary

- **PUMA**: new program at CERN / ELENA and ISOLDE
- Low-energy antiprotons to probe for the nuclear density tail of short-lived nuclei
- □ Halos and thick neutron skins searched in medium mass short-lived nuclei
- □ Transport trapped antiprotons from ELENA to ISOLDE
- Solenoid, trap, cryostat and detection to be designed and built (not started)
- □ Official start on 02.01.2018, LoI submitted to SPSC and INTC (dec. 2017)
- In collaboration with GBAR
- □ First physics experiments expected in **2022**
- **Potential** for nuclear physics beyond halos and skins

Sensitivity to final state interactions

TECHNISCHE UNIVERSITÄT DARMSTADT

- Pions may re-interact with residual nucleus Stable nuclei: probability 20-50%
- Solution: analyse charged pion multiplicity (M) AND sum charge (Sigma_c)
- Let treatment of final state interactions:

```
\lambda^+: \pi^0 + p -> \pi^+ + n

\lambda^-: \pi^0 + n -> \pi^- + p

\omega^+: \pi^- + p -> \pi^0 + n

\omega^-: \pi^+ + n -> \pi^0 + p
```

 analysis of M-Sigma matrices should lead to N(pbar-n)/N(pbar-p) with good accuracy and precision (<5% for 10⁵ annihilations)

new and systematic analysis based on simulated Monte-Carlo annihilations in progress (A. Corsi *et al.*)

M. Wada, Y. Yamazaki, Nucl. Instr. Meth. B 214 (2004)

$M \setminus \Sigma_c$	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	
0	0	0	0	0	0	0	0	0	0	0	(11386)*
1	0	0	0	0	17223	0	11233	0	0	0	28456
2	0	0	0	7530	0	21437	0	2844	0	0	31811
3	0	0	1029	0	11901	0	6591	0	179	0	19700
4	0	44	0	1904	0	4394	0	519	0	5	6866
5	1	0	99	0	979	0	451	0	13	0	1543
6	0	2	0	75	0	133	0	14	0	0	224
7	0	0	1	0	7	0	3	0	0	0	11
8	0	0	0	1	0	1	0	0	0	0	2
9	0	0	0	0	1	0	0	0	0	0	1
	1	46	1129	9510	30111	25965	18278	3377	192	5	88612

Solenoid magnet constrains

Optimization: N. Marsic, TU Darmstadt

Refs. Xu et al., "Homogeneous magnet design using liner programming" Wu et al., "Optimal design of a 7 T highly homogeneous superconducting magnet for a Penning trap"