1S-2S Spectroscopy of Antihydrogen

Chris Ørum Rasmussen

March 13, 2018

The 1S-2S transition frequency in hydrogen is one of the most precisely measured numbers in physics:

 $f_{1S-2S} = 2\ 466\ 061\ 413\ 187\ 035\ (10)\ Hz$

Comparing this value with its equivalent in antihydrogen is one of the most appealing and conceptually simple matter / antimatter comparisons, and is one of the main motivations for doing cold antimatter physics.

The ALPHA Experiment

Laser System

Hydrogen 1S and 2S Hyperfine Structure

- Trap antihydrogen from two mixing cycles (about 20 atoms)
- Clear out any remaining charged particles
- 300s hold time at d-d frequency
- 300s hold time at c-c frequency
- Ramp down magnets to detect remaining atoms
- 3 types of trials:
 - On resonance
 - Off resonance
 - No laser
- 11 repetitions of each type were conducted

Simulation

Simulate the response of ordinary hydrogen in the ALPHA trap

CERN

Data: Disappearance mode

Count the atoms left in the trap after the laser exposure. On- and off- resonance differ by 92 \pm 15 counts

Туре	Detected events	Background	Uncertainty
Off-resonance	159	0.7	13
On-resonance	67	0.7	8.2
No laser	142	0.7	12

Detector efficiency here is 0.688

Look for annihilations during the 300s hold times

Туре	Detected events	Background	Uncertainty
d-d off resonance	15	14.2	3.9
d-d on resonance	39	14.2	6.2
No laser	22	14.2	4.7
c-c off resonance	12	14.2	3.5
c-c on resonance	40	14.2	6.3
No laser	8	14.2	2.8
total off resonance	27	28.4	5.2
total on resonance	79	28.4	8.9
total No laser	30	28.4	5.5

Detector efficiency here is 0.376

Look for annihilations during the 300s hold times

Туре	Detected events	Background	Uncertainty
d-d off resonance	15	14.2	3.9
d-d on resonance	39	14.2	6.2
No laser	22	14.2	4.7
c-c off resonance	12	14.2	3.5
c-c on resonance	40	14.2	6.3
No laser	8	14.2	2.8
total off resonance	27	28.4	5.2
total on resonance	79	28.4	8.9
total No laser	30	28.4	5.5

Observation of the 1S-2S transition in trapped antihydrogen

M. Ahmadi¹, B. X. R. Alves², C. J. Baker², W. Bertsche^{4,5}, E. Butler⁶, A. Capra⁷, C. Carruth⁸, C. L. Cesar⁹, M. Charlton³, S. Cohen¹⁰, R. Collister², S. Friksson³, A. Evans¹¹, N. Evetts¹², J. Fajans⁸, T. Friesen², M. C. Fujiwara⁷, D. R. Cill⁷, A. Cuiterrez¹³, J. S. Hangst², W. N. Hardy¹², M. E. Hayden¹⁴, C. A. Isaac³, A. Ishida¹⁵, M. A. Johnson^{4,5}, S. A. Jones³, S. Jonsell¹⁶, L. Kurchaninov⁷, N. Madsen³, M. Mathgra⁹⁷, D. Maxwell⁵, J. T. K. McKenna⁷, J. M. Michan^{11,16}, T. Monose⁴, J. J. Munjch¹⁴, P. Nolan¹, K. Olchansk⁷,

1S-2S Antihydrogen

slide 9 of 16

CÉRN

Drive only the d-d transition

CÉRN

Experimental Procedure

- Trap antihydrogen from three mixing cycles (about 40 atoms)
- Clear out any remaining charged particles
- 300s laser exposure at fixed frequency near d-d transition
- 32s microwave sweep to eject c-state atoms
- Ramp down magnets to detect remaining atoms
- Interspersed trials of 4 different laser frequencies in a frequency 'set'
- 4 sets of 4 frequencies completed over 10 weeks
- 0 kHz and -200 kHz detuning included in every set
- \bullet +25 kHz repeated as another check of reproducibility

ullet 9 unique laser frequencies used on $\sim 15\,000$ atoms

Future Improvements

The main contributions to the line width are:

- Transit time broadening
- Depletion effects

Reduction of linewidth to be gained through:

- Increasing the laser beam size
- Cooling the \overline{H} (Laser cooling or adiabatic expansion)
- Operating at low depletion

Future Improvements

Expansion of laser beam size:

CERN

Future Improvements

New measurement strategies:

- Measure at low magnetic field
- Measure at several laser powers (extract AC stark shift)
- Measure at several temperatures (extract 2nd order Doppler)

None of these are unthinkable!

Thank you

C. Ø. Rasmussen

1S-2S Antihydroger

1S-2S Transition in Hydrogen

- $f_{1S-2S} = 2\ 466\ 061\ 413\ 187\ 035\ (10)\ Hz$
- Measured with a cold hydrogen beam

ERN

CPT Tests on an Energy Scale

Comparing the sensitivity to absolute energy differences of various CPT tests

Broadening Mechanisms and Shifts

Assuming 1W of circulating laser power and typical trap parameters Sizes given at $121 \mathrm{nm}$

Effect	Approximate Size
1st order Doppler	cancels
2nd order Doppler	80 Hz
Transition time	160 kHz
AC Stark	5 kHz
DC Stark	150 Hz
Magnetic shift d-d (c-c)	96 Hz/G (1.9kHz/G)
Ionisation width	4 kHz

