

Status of the GBAR experiment at CERN

Bruno Mansoulié, IRFU CEA-Saclay

on behalf of the

GBAR Collaboration

- Produce a high density positronium (Ps) plasma
- Use slow antiprotons (\bar{p}) from ELENA [decelerated, stored in \bar{p} trap]
- Two reactions:
 - 1) \bar{p} + Ps => \bar{H} + e⁻ [intense source of \bar{H} atoms for other measurements]
 - 2) \overline{H} + Ps => \overline{H}^+ + e⁻ [possibly enhanced with laser Ps excitation]
- Guide $\overline{\mathbf{H}}{}^{\scriptscriptstyle +}$ ions to free-fall chamber and cool them
 - [sympathetic laser-cooling to $10\mu K \simeq 1 \text{ neV}$]
- Photodetach the excess e⁺ : t₀
 - free fall over ~ 20 cm
- Detect the H atom annihilation [tracking detectors + T-O-F]
 location + time
- Goal $\Delta g/g \leq 1\%$

Bruno Mansoulié (IRFU-CEA), LEAP 2018, Paris

Ps plasma production

- **Ps production**
 - pure Silica (SiO₂) with nanometer size pores
 - emits Ps upon e⁺ implantation, with ~ 30% efficiency

- Ps Plasma in reaction tube
 - typical size l = 20 mm, diameter 1-2 mm
 - Si₃N₄ window for e⁺ implantation ____
 - window and mirror for excitation laser

Ps plasma production

Layout in the CERN AD hall

Installation

Antiproton decelerator

- ELENA \bar{p} 100 keV => 1-10 kV
- Preliminary version in place, tested for 100 kV
 - new vessels expected April (better vacuum for connection to ELENA)
- designing and installing proton source

Antiproton trap

- 7 T superconducting magnet with active shielding (Korea University Seoul) operated at 3 T in GBar
- being equipped as a trap
- to be tested with electrons
- ship to CERN in 2018 (?)

Electron LINAC

- Installed in 2017 with temporary cavity
- limited to 100 Hz (nominal 300 Hz)
 8.3 MeV (nominal 10 MeV)
 100 mA current
- final structure
 tested at 10 MeV, 300 mA, 300 Hz
 now in GBAR (Feb 2018)
 under commissioning

- Water-cooled Tungsten target
- Tungsten mesh moderator
- 8 mT solenoids guide the slow e⁺ out of bunker

Positron production measurements

e⁺ *beam line exiting the bunker*

first e^+ signals on Nov. 17

- e^+ yield outside the bunker measured by annihilation γ 's
 - energy measured by potential grid: 1.3 eV RMS (OK for trapping in buffer-gas trap)
 - demonstrated ~ 10⁵ e⁺ /pulse with temporary linac
 - expect ~ $3 \ 10^5 \ e^+$ /pulse with present linac, i.e. $10^8 \ e^+$ / s at $300 \ Hz$

Positron traps, reaction chamber

- Buffer Gas trap built and operated at Saclay
 - ready to accept e⁺
- High field positron trap from Riken
 - connecting and commissioning
- Reaction chamber
 - finalizing inner parts, instrumentation

Bruno Mansoulié (IRFU-CEA), LEAP 2018, Paris

Ps excitation laser

- Laser ready at LKB Paris
- Hut and tables installed
- will move to CERN before summer
- install and commission
- bring beam down to reaction chamber

cooling of $\overline{H}{}^{\scriptscriptstyle +}$ ion

• Be⁺ crystal cooling

Precision cooling trap

 see Sebastian's talk tomorrow

For details ask LKB experts here!

Free-fall chamber and detection

Free fall chamber : h = 60 cm (20 cm fall), Ø 50 cm

- Inner cooling traps
 - Be crystal trap
 - precision trap
- lasers: for traps, and photodetachment
- active magnetic shielding
- track detectors
 - MicroMegas chambers (6 triplets)
 - Five double plane prototypes made. (one in GBar)
 - Triplet "0" soon available
 - Time-of-Flight counters (4 large walls):
 - First plane operational in Gbar area

Outlook

- Spring 2018
 - e⁺
 - finish conditioning of new LINAC
 - exercise buffer-gas trap
 - exercise e⁺ trap
 - **p**
 - accept H⁻ from ELENA
 - install new decelerator and proton source
- Summer
 - e⁺ to reaction chamber ; study Ps
 - accept \bar{p} from ELENA
 - install Ps excitation laser
- Fall
 - e^+ , \overline{p} , laser to reaction chamber => \overline{H} beam; a few \overline{H}^+ ?
- LS2 : optimize, install Free Fall chamber (including ion cooling, etc.)
- 2021: free fall !

Bruno Mansoulié (IRFU-CEA), LEAP 2018, Paris

Additional slides

The GBAR Collaboration

D. Banerjee, F. Biraben, M. Charlton, M. Chung, P. Cladé, P. Comini, P.-P. Crépin, P. Crivelli,
O. Dalkarov, P. Debu, L. Dodd, A. Douillet, G. Dufour, P. Dupré, P. Froelich, S. Guellati,
R. Guérout, J. M. Heinrich, P.-A. Hervieux, L. Hilico, A. Husson, J. Hwang,
P. Indelicato, G. Janka, S. Jonsell, J.-P. Karr, K. Khabarova, B.H. Kim, S.K. Kim, Y. Kim,
E. Kim, N. Kolachevsky, N. Kuroda, A. Lambrecht, B. Latacz, A. Lee, J. Lee, A.M.M. Leite,
K. Lévêque, L. Liszkay, P. Lotrus, T. Louvradoux, D. Lunney, N. Madsen, G. Manfredi,
B. Mansoulié, Y. Matsuda, A. Mohri, G. Mornacchi, V. Nesvizhevsky, F. Nez, K. Park, P. Pérez,
B. Radics, C. Regenfus, J.-M. Rey, J.-M. Reymond, S. Reynaud, J-Y Roussé, A. Rubbia,
J. Rzadkiewicz, Y. Sacquin, F. Schmidt-Kaler, N. Sillitoe, M. Staszczak, H. Torii, B. Vallage,
M. Valdes, D.P. van der Werf, A. Voronin, S. Wolf, S. Wronka, Y. Yamazaki

Bruno Mansoulié (IRFU-CEA), LEAP 2018, Paris

Ps production in SiO₂

Reaction chamber

$\overline{H} \text{ and } \overline{H}^{\scriptscriptstyle +} \text{ transport}$

 Switchyard (electrostatic)

