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MOTIVATIONS
Tests in different systems:  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MOTIVATIONS

access to the electric and magnetic form factors of the antiproton

Leading term: Fermi contact term
has been measured to 1.5 ppb

Finite electric and magnetic radius (Zemach corrections): ~-41ppm 

Polarizability of p(bar) =1.88±0.64 ppm
e.g Friar et al. Phys.Lett. B579 (2004)
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me
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↵2cRy

Carlson, Nazaryan, and Griffioen PRA 78, 022517 (2008)

Remaining deviation theory-experiment: 0.86±0.78 ppm

S. G. Karshenboim, Precision Physics of Simple Atomic Systems, pages 
142–162, Springer, Berlin, Heidelberg, 2003, hep-ph/0305205.

⌫ = 1.420405751768(1) GHz

C. Smorra et al., Nature 550, 371 (2017)

http://inspirehep.net/author/Friar%2C%20James%20Lewis?recid=630652&ln=en
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MOTIVATIONS
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Standard model extension (SME)

CPT Violation and the Standard Model, D. Colladay and A. Kostelecky,
Phys. Rev. D 55, 6760 (1997)

Lorentz and CPT Tests in Hydrogen, 
Antihydrogen, and Related Systems, 
A. Kostelecky and A. Vargas,  Phys. Rev. D 
92, 056002 (2015)

Dirac equation in mSME :

Different measurements (even of the same quantity) are sensitive (or not) to different 
SME coefficients

Effective field theory developed as a theoretical background for Lorentz violation 
search. 
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➡  𝜋1 and 𝜎1  at a given B field

➡  Extrapolate either transition from several measurements at different fields

All are CPT tests (comparison of the H̄ zero-field value with H)  
 
But NOT all constrain SME parameters

Measurements motivated in the framework of SME for  
both hydrogen and antihydrogen
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ASACUSA HYDROGEN & 
ANTIHYDROGEN EXPERIMENTS 
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BEAM VS. TRAP

Advantage of beam:  
Absence of strong field gradient  
Lower requirement on the temperature 
of antihydrogen atoms

ALPHA 

ASACUSA 

Inconvenient of beam:  
Need “focussing” (loss of solid angle)  
Cannot easily control the quantum state at the detector  
More difficult to control the polarization
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1ST HYDROGEN SETUP

@ CERN B165

Antihydrogen 
spectroscopy 

apparatus 
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1ST HYDROGEN SETUP
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1ST HYDROGEN SETUP
“strip-line” cavity design
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Robust lineshape fit
Extraction of amplitude of oscillatory field, 
velocity and velocity spread

 Spectroscopy apparatus if fully commissioned 
and ready for H̄ spectroscopy

𝝈 MEASUREMENT
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𝝈 MEASUREMENT
ppm result with antihydrogen should be in reach if enough statistics can be gathered

error bar of a data point

Number of data points 

Count rate drop

line-shape dependent factor

For  ppm  measurement  using   4  resonances  we  estimate  ~  8000  atoms  should  be 
recorded at the antihydrogen detector

Interaction time

Assuming background :  
- 50% atoms are in excited states
- 50% of remaining are in wrong lfs state  
- polarisation P=1/3  
Assuming MB distribution @ 50K 

➠ need to increase the H̄ rate at the detector by > 1 order of magnitude
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Other possibility :  

Measure 𝜋1 & 𝜎1 at the same field : 2 resonances needed, not sensitive to stray field 
(from the earth or from CUSP in the antihydrogen experiment)  
 
Advantage : 𝜋1  is sensitive to SME coefficients  
 

BUT 𝜋1 more sensitive to  magnetic field inhomogeneities 

𝝅 MEASUREMENT
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𝝅 MEASUREMENT

Helmohlz coils with corrections coils

Cavity tilted at 45˚ to allow both transitions at the same 
time
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2ND HYDROGEN SETUP
atomic hydrogen 

source

cold Teflon pipe
à 50-100K beam

polarizing
sextupole magnets

tuning fork
chopper

H detection
(QMS)

microwave cavity
(strip-line type)

McKeehan coils3 layers mu-metal shield

analyzing
sextupole magnets

@ CERN B275

atomic	H	sourcepolarizing	
	sextupole	magnets

microwave	 
cavity

analyzing	sextupole 
magnet

detec7on  
(QMS)

cold	Teflon	pipechopperMc	Keehan	coils3	layers	mu-metal	shield
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𝝅 MEASUREMENT
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“Simultaneous” measurement of  𝜋1 and 𝜎1 ➠ ppb precision reached!

This new apparatus will be used for further systematic studies for H̄ experiment 
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SME MEASUREMENTS
Siderial variations constrained by Harvard-Smithsonian maser at 
mHz level

72 SME coefficients involved. 48 constrained, 24 remaining and can be constrained by 
swapping the direction of the static B-field and measuring 𝜋1 while using 𝜎1 as a proxy

ppb foreseen (Hz level precision) in a first stage :  
Improvement possible with slower beam, Ramsey method, higher count rate

coefficients in the lab-frame are associated with three independent coefficients in 
the Sun-centred frame :

Earth rotation frequency sidereal time
angle between B-field and 

Earth’s rotational axis



MARCH  13TH 2018                     — LEAP 2018 — PARIS —                                  CHLOÉ MALBRUNOT 

TOWARDS HIGHER PRECISION

Source

Polarized Beam

Oscillating Field

State Analysis & Detection

lfs

hfs hfs
lfs

Separated 
Oscillatory Fields

Ramsey’s separated oscillatory field method ➠

New cavity design studies on-going➠
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talk by N. Kuroda this morning

See talks of B. Kolbinger  

&  

A. Gligorova  

on Wednesday
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CONCLUSIONS

Two fronts:  

- Hydrogen beam:  ppb measurement achieved on σ 
transition.  

- Characterization of H̄ beam —> towards spectroscopy 

New program with Hydrogen :  
 
- Measurement of σ and π
 
- Further assessment of potential systematics for H̄ 
measurement  
 
- Constraints on SME coefficients ANTIHYDROGEN
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ASACUSA-CUSP 
COLLABORATION  & FUNDING


