

GAPS, low-energy antimatter for indirect dark-matter search

E. Vannuccini (INFN Florence)

On behalf of the GAPS collaboration

14/03/201

Dark Matter (DM)

COMPOSITION OF THE COSMOS Heavy Elements: 03% Veutrinos: Free Hydrogen and Helium: Dark Matter: Dark Energy:

- ~1/4 of our Universe is composed of DM:
 - Weakly coupled to SM particles
 - Dynamically cold
 - No direct indication on the mass scale

(but GeV-TeV well motivated range,

→ Weakely Interacting Massive Particle (WIMP))

• Evidence of DM is purely of gravitational origin

Non-gravitational signal is needed to understand its particle-physics nature

Indirect

detection

Astrophysical messengers of DM

(Fornengo. XXV ECRS 2016)

Halo signals

Charged lepton CRs: e[±]
 Charged baryionic CRs: p
 , D
 , He

Photons

- Gamma rays
 Prompt production
 IC from e[±] on ISRF and CMB
 X-rays
- IC from e^{\pm} on ISRF and CMB - Radio
 - Synch. from e^{\pm} on B fields
- Neutrinos

Local signals

- Neutrinos from Earth and Sun
- Direct detection

Multi-messenger, multi-wavelength approach to DM search (available channels depend on DM mass and astrophysical background)

Astrophysical messengers of DM

(Fornengo. XXV ECRS 2016)

• Charged baryionic CRs: \overline{p} , \overline{D} , \overline{He}

General Antiparticle Spectrometer (GAPS) science

Multi-messenger, multi-wavelength approach to DM search (available channels depend on DM mass and astrophysical background)

Cosmic p

- Most abundant baryonic antiparticle component in CRs
- Extensively measured with magnetic spectrometers from 200 MeV up to 450 GeV
- Consistent, within uncertainties, with secondary background
 - → Upper bound to WIMP mass (eg ~40 GeV from PAMELA data)

Low-energy p ...

Secondaries (background) $p_{CR} + p_{ISM} \rightarrow \bar{p} + ppp$

 Produced in the disk (kin. threshold)

disk

diffusive halo

Propagate in the diffusive halo

dark matter halo

Low-energy \overline{p} probe light-DM...

Secondaries (background) $p_{CR} + p_{ISM} \rightarrow \bar{p} + ppp$

- Produced in the disk (kin. threshold)
- Propagate in the diffusive halo

DM signal $\chi \chi \to (\dots) \to \bar{p} + p$

Produced in the DM halo

Propagate in the diffusive halo

Annihilating neutralino Lighter SUSY particle $\langle \sigma v \rangle = 3 \ 10^{-26} cm^3/s$ (Kappl et al 2012)

7

...and other DM models

) E. Vannuccini - LEAP 2018

14/03/2018

Cosmic \overline{D}

Donato, Fornengo, Salati PRD 62 (2000) 043003 Aramaki et al – Phys.Rep. 618 (2016) 1

ightarrow Favourable signal-to-background ratio al low energy

The GAPS experiment

General Anti-Particle Spectrometer

- → Balloon-based experiment optimized for the detection of lowenergy baryonic antiparticles (E < 250 MeV)
- Science summary:
 - Search for antideuterons as DM signatures
 - No astrophysical background
 - Precise measurement of antiproton flux
 - Possible spectral signatures of DM and evaporating PBH
- Flight plan:
 - 1 LDB flight (~ 35 days) -> high-statistic antiproton measurement ~1500 p
 (vs ~30 p
 BESS ~7 p
 PAMELA E < 250 MeV)
 - 2 LDB flights (~ 70 days) -> improved antideuteron statistics sensitivity: ~ 3.0 × 10⁻⁶ m⁻² s⁻¹ sr⁻¹ (GeV/n)⁻¹
 - 3 LDB flights (~ 105 days) -> sensitivity: ~ 2.0 × 10⁻⁶ m⁻² s⁻¹ sr⁻¹ (GeV/n)⁻¹
- \rightarrow First flight approved by NASA for antarctic summer 2020/2021

The GAPS collaboration

University of Columbia MIT UC Berkley UC Los Angeles UC San Diego University of Hawaii at Manoa Penn State University Oak Ridge Laboratory ISAS-JAXA INFN

GAPS detection method

Based on the antiparticle annihilation process inside a medium

- 1. Low-energy antiparticles (\bar{p}, \bar{D}) slowdown traversing the medium
- 2. They stop, forming an **exotic atom** in an **excited** state, which de-excites through radiative transitions, emitting detectable **X-rays**
- 3. They are captured by atomic nuclei and undergoes **nuclear annihilation**, emitting **pions** and **protons**

X-ray emission by exotic atom

- X-ray yield for antiprotonic exotic atoms formed with Al and S target measured @KEK (Japan) in 2004/2005
- Development of a comprehensive atomic cascade model tuned on KEK data
 - benchmarked against other anti-protonic and muonic exotic atoms
 - extended to any other exotic atom \rightarrow prediction for \overline{D} in Si

The GAPS apparatus

Time-of-Flight system

- 1 outer + 1 inner layers
 - Plastic scintillator, readout on each end by SiPMs
 - 1 m b/w outer and inner layers
 - < 500 ps resolution</p>

Tracking system

- 12×12 Si(Li) wafers
 - -48°C operation temperature
 - 10 cm \varnothing × 2.5mm thickness
 - segmented into 8 strips
- 10 layers with 10 cm spacing

ightarrow 3D particle tracking

- dual channel electronics
 - X-ray (20 80 keV)
 - charged particles (up to 50 MeV)
- 4 keV energy resolution

Oscillating Heat Pipe (OHP) passive cooling system

weight: 1700kg power: 1.4kW

\overline{D} vs \overline{p} identification

Si(Li) detectors

Shimazu prototype 10 cm wafer \emptyset , 2.5 mm thick 4-strip design

1440 Si(Li) needed

•

- Fabrication facility set up @ Columbia University
 - 4.4 keV FWHM resolution with ²⁴¹Am Xrays @-40°C achieved
- Mass production by Shimazu (Japan)
 - Achieved leakage current <10 nA @-35^oC
 - Final design 8 strips, operated @ -48°C

14/03/201

TOF detectors

В

plastic scintillator

А

- 240 scintillators
 - 160×18 cm² (inner)
 - 180×18 cm² (outer)
 - 5mm thick EJ-200 (Eljen Tech.)
- SiPM readout
 - 3+3 MPPC S13360-6050VE (Hamamatsu)
- Achieved timing resolution @ paddle center 485ps

17

APS

- Successful flight of GAPS prototype in June 2012 from Taiki (Japan)
 - First balloon experiment with Si(Li) detectors
 - Stable response to X-rays (calibration sources) and MIPs
 - X-ray background measured
 - Standalone OHP cooling system demonstrated

Mognet et al – NIM 735 (2014) 24 Von Doetinchem et al – Astro.Ph. 54 (2014) 93

GAPS D sensitivity

- X-ray yield from atomic cascade model
- π and p multiplicity from Intra-Nuclear Cascade (INC) model
- All particles propagated with Geant4 (v10.01)
- D Selection
 - Stopping depth + (X, π , p)
- \rightarrow Sensitivity (105 days, 99% CL) $\sim 2.0 \times 10^{-6}$ m⁻² s⁻¹ sr⁻¹ (GeV/n)⁻¹

$\langle M_{\pi^\pm} angle$	$\epsilon^{ar{p}}_{\pi}$	$\epsilon^{\bar{d}}_{\pi}$	 $\langle M_p^{60}\rangle$	$\epsilon_p^{ar p}$	$\epsilon_p^{\bar{d}}$
<u>></u> 3	0.53	0.93	≥1	0.31	0.87
<u>≥</u> 4	0.25	0.80	≥2	0.054	0.60
≥5	0.070	0.62	≥3	0.0064	0.34
≥ 6	0.093	0.41	≥ 4	0.00058	0.16
≥7	0.00067	0.23			
≥8	0.000026	0.11			

Aramaki et al. Astro.Ph. 74 (2016) 6

Compressed Atmosphere 4 g/cm^2

> $> 3 \text{ m}^2 \text{ sr effective grasp for anti-particles}$ annihilating within the detector

Conclusions

Atomic Transitions

Auger e

- Measurement of cosmic $\overline{m{D}}$ and $\overline{m{p}}$ is a promising way of indirect DM search
- The General Anti-Particle Spectrometer (GAPS) is specifically designed for low-energy \overline{D} search and \overline{p} flux measurement (< 250 MeV)
 - Novel detection technique based on detection and reconstruction of annihilation events
 - Exotic-atom radiative de-excitation + star-like annihilation products
 - ightarrow Complementary to spectrometer-based $\ensuremath{\overline{D}}$ searches
 - First LDB flight approved by NASA in Antarctic summer 2020/2021
 - ightarrow 100× statistics of \overline{p} below 250 MeV
 - Full $\overline{\pmb{D}}$ sensitivity after ~100 hours (~3 LDB) flight
- Status of the experiment
 - Detection concept and detector in-flight operation demonstrated
 - Design finalized
 - Si(Li) detector production ready to start

Thank you for the attention!

(... and cross the finger for a $\overline{m{D}}$ detection

Fornengo, Maccione, Vittino – JCAP 9 (2013) 031

Low-energy p probe SUSY DM,

Low-energy p probe SUSY DM, KK-DM and PBHs

Atomic cascade model

Aramaki et al. Astro.Ph. 49 (2013) 52

- Focusing on low-n state transition (E>10keV)
- Antiparticle captured at the radius of the outermost e-
- Hydrogen-like exotic atom
- Three de-excitation transitions:
 - Auger
 - Radiative
 - Nuclear capture

<i>p</i> -Si	Cascade Mode		<i>ā</i> -Si	W = 10 MeV	W = 20 MeV		
106 keV $(5 \rightarrow 4)$	70%		$112 \text{ keV} (6 \rightarrow 5)$	28%	17%		
58 keV $(6 \rightarrow 5)$	84%		$67 \text{ keV} (7 \rightarrow 6)$	96%	94%		
$35 \text{ keV} (7 \rightarrow 6)$	73%		$44 \text{ keV} (8 \rightarrow 7)$	92%	93%		
	I		$30 \text{ keV} (9 \rightarrow 8)$	80%	80%		
	$W_{\bar{d}} \sim 2W_{\bar{p}} = 10$ MeV,						

GAPS D sensitivity (bis)

28

GAPS D sensitivity (tris)

	Aannihilation at rest		In-flight			Annihilation at rest		In-flight		
$\langle M_{\pi^\pm} angle$	$\epsilon^{ ilde{p}}_{\pi}$	$\epsilon^{ar{d}}_{\pi}$	$\epsilon^{ar{p}}_{\pi}$	$\epsilon^{ar{d}}_{\pi}$		$\langle M_p^{60}\rangle$	$\epsilon_p^{ ilde p}$	$\epsilon_p^{\bar{d}}$	$\epsilon_p^{ar p}$	$\epsilon_p^{\bar{d}}$
<u>></u> 3	0.53	0.93	0.57	0.93		>1	0.31	0.87	0.32	0.88
≥ 4	0.25	0.80	0.58	0.82		>2	0.054	0.60	0.057	0.62
≥5	0.070	0.62	0.092	0.64		>3	0.0064	0.34	0.0070	0.36
≥6	0.093	0.41	0.019	0.44		<u>~</u>	0.00058	0.16	0.00066	0.016
≥7	0.00067	0.23	0.0024	0.26		24	0.00038	0.10	0.00000	0.0.10
>8	0.000026	0.11	0.00016	0.13						

Oscillating Heat Pipe

- Small capillary tubes filled with phase-changing refrigerant liquid
- Thermo-hydrodynamic waves set by expansion and collapse of vapor bubbles
- Fluid oscillation between cooling and heating sections
- No active-pump required
- Developed by JAXA/ISAS

Okazaki et al – J.Astr. 3 (2014)