

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann AdG HBAR-HFS no. 291242

Antihydrogen Detection for Measuring the Ground State Hyperfine Splitting of Antihydrogen

B. Kolbinger on behalf of the ASACUSA collaboration

LEAP Conference, March 2018

Overview

000

Antihydrogen Detector Tracking detector

Machine learning analysis

Detector upgrade

Summary

Overview of ASACUSAs H HFS experiment

and Positrons (CERN's AD) and Positrons (²²Na) form cold H within CUSP trap in a mixing process

- antiatoms will escape trap, beam enters spectroscopy beam line: cavity (spin flips), sextupole (analyses spin)
 - detector: monitors count rate of arriving H

Detector: counting antihydrogen atoms

low \bar{H} production rate \rightarrow requirements: efficiently detect annihilation, background suppression

π

two layered hodoscope

central calorimeter for detecting p annihilations:

0

0.

- ► BGO disc (⊘ 9cm, 5mm thickness)
- ► read out by 4 Multi Anode Photomultiplier → energy and position information

2-layered hodoscope for tracking:

- 32 plastic scintillating bars per layer
- tracking secondary particles from antiproton annihilation, cosmic particles etc.
- C. Sauerzopf et al. NIMA A845 (2017) 579-582

Tracking detector I

scintillating light detection with **silicon photomultipliers** (SiPMs) on both ends of bars

record signals with waveform digitisers

Tracking detector II

0

0.

time of flight: diameter of outer hodoscope $35 \text{ cm} \rightarrow \text{ToF}$ possible with resolution < 600 ps, discriminate: particles from outside or inside detector! measured resolution:

outer: 551 \pm 5 ps (FWHM) inner: 497 \pm 3 ps

 hit position on bars in beam direction: from time information of up and downstream SiPM signals measured resolution:

outer: 7.3 \pm 0.3 cm (FWHM) inner: 5.9 \pm 0.4 cm

length of bars: inner: 30 cm, outer: 45 cm

What do signal and background look like?

- **signal**: annihilation of antiproton, secondary particles (mostly pions)
- background: dominated by cosmic particles (can be measured during beam off periods), annihilations on beam pipe in front of detector

BGO Edep: 74.17M

-150

· · · · · · · ·

00⁰⁰00

upstream annihil .:

recorded p vs cosmics

H identification

0

- \rightarrow supervised machine learning: boosted gradient decision trees
- use measured data for training and testing
 - $\approx 4000~\bar{p}$ events, ≈ 30000 cosmic events
 - careful **cuts to reduce background** in antiproton data \rightarrow estimated cosmics left: 0.3% of signal data

- split into 2/3 training and 1/3 testing sample, several rounds of training and testing
- from the class predictions of the algorithm for the test sets:
 - ▶ cosmic rejection: (99.755 ± 0.015) %
 - ▶ false positive rate: (0.00391 ± 0.00025) /s
 - pbar efficiency: (79.58 \pm 0.79) %
- identify antihydrogen events in mixing runs

Identifying H candidates using machine learning (2016)

quantum state distribution of H
 candidates

field ioniser after mixing trap

0

00⁰⁰00

- ionise atoms above principal quantum number n_{min}
- 0.16 counts per run for n < 14 (4.5 σ)

Malbrunot, C. et al., Phil. Trans. R. Soc. A 376, 20170273 (2018)

Tracking detector – upgrade using scintillating fibres I

purpose: increase position resolution in beam direction

reminder:

- > z resolution of bar hodoscope: \approx 6 cm to 7 cm (FWHM)
- length inner bars: 30 cm, length outer bars: 45 cm

Tracking detector – upgrade using scintillating fibres I

purpose: increase position resolution in beam direction

2 add. layers out of fibres perpendicular to bars

- 2×2 mm fibres, bundled into 4×4 mm bunches
- 1 turn around per bunch, read out by SiPM on one end
- outer: 100 ch, inner: 63 ch
- digital leading edge signal fed into TDCs, record timestamp and time-over-threshold

4mm x 4mm

Tracking detector – upgrade using scintillating fibres II

00

- enables 3D tracking: discriminate between straight tracks created by cosmics and tracks with a kink due to antiproton annihilations
- precise vertex reconstruction: helps to reject upstream annihilations, defocused high field seekers

Events in 3D – example cosmic event

- inner layers: blue, outer layers: red
- crosses: bar hodoscope, width: z-resolution (2σ)
- squares: fibres with a hit
- consistency of sub-detectors and increased position resolution

Events in 3D – example \bar{p} event

- preliminary matching of fibre with bar hits (no \u03c6 resolution of fibre detector)
- crosses: bar hodoscope, width: z-resolution (2σ)
 - squares: fibres with a hit

000000

0° 0° 0° 0°

tracks drawn to guide eye

Events in 3D – example \bar{p} event

- preliminary matching of fibre with bar hits (no \u03c6 resolution of fibre detector)
- crosses: bar hodoscope, width: z-resolution (2σ)
 - squares: fibres with a hit

tracks drawn to guide eye

Summary

- ASACUSA detector for antihydrogen detection and its upgrade has been presented
- data-driven machine learning algorithm for signal and background identification
 - result: quantum state distribution
- fibre upgrade first time integrated into the experimental setup in 2017
 - enables 3D tracking for analysis (on-going)
 - discriminate against additional background sources (upstream annihil.)

