Testing CPT with the Antihydrogen Molecular Ion

Edmund G. Myers

Florida State University, Department of Physics, Tallahassee, Florida, USA

arXiv:1802.01514v1

Acknowledgement: US National Science Foundation

 \overline{H}_2^- is the simplest anti-protonic ion with bound excited states

 $\overline{p} e^+ \overline{p}$ (compare with H₂⁺ $p e^- p$) Electronic ground state ${}^2\Sigma_{1/2}$

 \overline{H}^+ ($e^+ \overline{p} e^+$) has no bound excited states

H_2^+ Ro-Vibrational Spectroscopy <10⁻¹⁶

INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 34 (2001) 491-507

www.iop.org/Journals/jb PII: S0953-4075(01)18463-4

2001

Polarizabilities, light shifts and two-photon transition probabilities between J = 0 states of the H⁺₂ and D⁺₂ molecular ions

L Hilico^{1,2}, N Billy^{1,2}, B Grémaud¹ and D Delande¹

¹ Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Case 74, 4 Place Jussieu, 75252 Paris, France

² Département de Physique et Modélisation, Université d'Evry Val d'Essonne, Boulevard F. Mitterrand, 91025 Evry Cedex, France

RAPID COMMUN

PHYSICAL REVIEW A 94, 050501(R) (2016)

Hydrogen molecular ions for improved determination of fundamental constants

J.-Ph. Karr,^{1,2} L. Hilico,^{1,2} J. C. J. Koelemeij,³ and V. I. Korobov⁴

¹Laboratoire Kastler Brossel, UPMC-Université Paris 6, ENS, CNRS, Collège de France, 4 place Jussieu, F-75005 Paris, France ²Université d'Evry-Val d'Essonne, Boulevard François Mitterrand, F-91000 Evry, France ³Department of Physics & Astronomy and LaserLaB, VU University, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands ⁴Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia (Received 11 May 2016; published 18 November 2016)

PRL 113, 023004 (2014)

Journal of Molecular Spectroscopy 300 (2014) 37-43

J.-Ph. Karr*

2017

PHYSICAL REVIEW LETTERS PRL 118, 233001 (2017)

week ending

9 JUNE 201

Fundamental Transitions and Ionization Energies of the Hydrogen Molecular Ions with Few ppt Uncertainty

Vladimir I. Korobov Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

L. Hilico and J.-Ph. Karr Laboratoire Kastler Brossel, UPMC-Université Paris 6, ENS, CNRS, Collège de France 4 place Jussieu, F-75005 Paris, France and Université d'Evry-Val d'Essonne, Boulevard François Mitterrand, F-91000 Evry, France (Received 23 March 2017; published 8 June 2017)

> week ending 11 JULY 2014

Ś

Simplest Molecules as Candidates for Precise Optical Clocks

S. Schiller,¹ D. Bakalov,² and V. I. Korobov³

¹Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany ²Institute for Nuclear Research and Nuclear Energy, Tsarigradsko Chaussée 72, Sofia 1784, Bulgaria ³Joint Institute for Nuclear Research, 141980 Dubna, Russia

Edmund Myers, LEAP 2018 Paris

PHYSICAL REVIEW LETTERS

Tests of CPT using anti-hydrogen

Compare 1s-2s (2 photon) transition and and 1s Hyperfine splitting (HFS)

Measurements on Hbar: 1s-2s to 2 x 10^{-12} (ALPHA 2017) 1s HFS to 4 x 10^{-4} (ALPHA 2017)

Measurements on H: 1s-2s to 4×10^{-15} (Garching 2011) 1s HFS to 7 x 10⁻¹³ (Paris-Sud, Orsay 2011, MASER)

*1s-2*s comparison measures $q(e^+)^4 m(e^+) - q(e^-)^4 m(e^-)$

Dependence on *m(e)/m(p)* through reduced mass correction, but is x1836 less sensitive

Why H_2^+/\overline{H}_2^- ?

A) <u>Best optical atomic clocks</u>: (2018 record **2.5 x 10**⁻¹⁹!)

- 1) <u>Single</u> ion, e.g. Al⁺, Yb⁺
- 2) Ultra-cold atoms in an optical lattice, e.g. Sr, Yb

B) Working with neutrals is harder than ions...

Atom traps are *very* weak, inhomogeneous B...

Optical Lattice for H/\bar{H} ?

Need high intensity

Magic wavelength for 1s-2s is 513 nm A. Kawasaki, PRA **92**, 042507 (2015)

Ideal: H and \overline{H} in the same lattice!

H₂⁺ Ro-vibrational levels

H₂⁺ Ro-vibrational levels

Even N, I=0, Para; odd N, I=1, Ortho Ortho, Para are "separate species" $\Delta N = 0, \pm 2$

Vibrational levels decay by *E2* transitions Mean lifetimes are ~week, or longer

Many, very narrow (<µHz width) transitions

But no fluorescence, how to detect?

How to initialize the state?

Edmund Myers, LEAP 2018 Paris

Continuous Stern-Gerlach effect to detect <u>electron</u> spin-flips

Sven Sturm *et al*, Nature 2014, $\boldsymbol{g}_{e}(^{12}C^{5+})$ to 3 x 10⁻¹¹

Continuous Stern-Gerlach effect to detect <u>electron</u> spin-flips

Sven Sturm *et al*, Nature 2014, $\boldsymbol{g}_{e}^{(12}C^{5+})$ to 3 x 10⁻¹¹

Bound e^{\pm} magnetic moment of \overline{H}_2^-/H_2^+ N=0: no hyperfine structure!

Measure bound positron spin-flip frequency in high *B*

Calibrate *B* by measuring Cyclotron frequency

 $f_s(e spin-flip) = 28.02.. \text{ GHz/tesla}$

Easier than *p* magnetic moment (Ulmer et al.), Magnetic moment is ~600x larger

Ratio of spin-flip to cyclotron frequency

$$\frac{f_s}{f_c} = \left| \frac{\bar{g}_e(\bar{H}_2^-(v,0))}{2} \frac{q(e^+)}{m(e^+)} \frac{M(\bar{H}_2^-(v,0))}{q(\bar{H}_2^-)} \right|$$

Sensitive to $g(e^+)m(\overline{p})/m(e^+)$

CPT test #1

Edmund Myers, LEAP 2018 Paris

Even *N*, *N*≠0: add rotational HFS

$$E(v, N; M_S, M_N; B) \simeq E(v, N) - \bar{g}_e(v, N) B\bar{\mu}_B M_S + \bar{g}_r(v, N) B\bar{\mu}_B M_N + \bar{\gamma}(v, N) M_S M_N, electron spin-rotation interaction$$

 $\Delta M_S = \pm 1, \ \Delta M_N = 0$

electron spin-flip transition

$$\Delta E(v, N, M_N; B) \simeq \bar{g}_e(v, N) B \bar{\mu}_B - \bar{\gamma}(v, N) M_N$$

Even N, N≠0: add rotational HFS

e.g. consider v=0, N = 2 B = 5 tesla

Even N, N≠0: add rotational HFS

e.g. consider v=0, N = 2 B = 5 tesla

<u>Change in e[±] spin-flip freq. due to spin-</u> rotation interaction identifies v, N !

$$\Delta E(v, N, M_N; B) \simeq \bar{g}_e(v, N) B\bar{\mu}_B - \bar{\gamma}(v, N) M_N$$

$$\Delta v = 1,$$
 $\gamma(0, 2) - \gamma(1, 2) = 2.950 \text{ MHz}$
 $\Delta N = 2,$ $\gamma(0, 2) - \gamma(0, 4) = 0.868 \text{ MHz}$

few x 10⁻⁶ change to e[±] spin-flip frequency of ~140 GHz

Odd N, add nuclear spin HFS

I = 1, 3x as many states ...

$$\Delta M_S = \pm 1, \ \Delta M_N = 0, \ \Delta M_I = 0$$

$$\Delta E(v, N, M_N; B) \simeq \bar{g}_e(v, N) B \bar{\mu}_B$$

$$-\bar{\gamma}(v, N) M_N - \bar{b}(v, N) M_I + \dots$$

Fermi-contact interaction

Triple resonance for HFS Measure $\Delta M_N = \pm 1$ or $\Delta M_I = \pm 1$ transitions

Edmund Myers, LEAP 2018 Paris

Also detect vibrational transition using change in mass-energy

See: Smith, Hamzeloui, Fink, Myers, PRL in press Detect rotational energy change in H_3^+ from cyclotron frequency

\overline{H}_2^-/H_2^+ Ro-Vibrational Spectroscopy <10⁻¹⁶ in a <u>5 tesla Penning trap</u> !?

(N=2, "stretched to stretched") Zeeman shift = $\frac{7.5 \times 10^5 \text{ Hz}}{10^5 \text{ Hz}}$

But, from cyclotron or *e* spin-flip, $\sigma(B)/B << 10^{-9}$

→ σ(f)/f < 10⁻¹⁷

Quadrupole shift ~ 25 Hz

Calibrate to $\sim 10^{-6}$, from characterization of trapping fields using ion's motional frequencies

→ $\sigma(f)/f < 10^{-18}$

Zeeman Effect: Karr, Hilico et al

H_2^-/H_2^+ Ro-Vibrational Spectroscopy <10⁻¹⁶ in a <u>5 tesla Penning trap</u>?

If cool Axial ($f_z = 1$ MHz) and Cyclotron ($f_c = 35$ MHz) modes of ion **to 20 mK**;

Magnetron ($f_m = 14$ kHz) (by coupling to axial mode) to 0.3 mK

 $z_{\rm rms} = 1.44 \ \mu m$, $r_{\rm c} = 0.058 \ \mu m$, $r_{\rm m} = 0.17 \ \mu m$

Hence, in Lamb-Dicke regime for transverse laser irradiation at $\lambda = 4.5 \ \mu m \rightarrow No \ 1^{st}$ order Doppler shift

Second-order Doppler shift: 0.9×10^{-15}

How to cool: Image current cooling, with dilution refrigerator Electrical coupling to laser-cooled ion in another trap Sympathetic cooling with laser-cooled –ve ion

How to make \overline{H}_2^-

$$\bar{H}^+ + \bar{p} \to \bar{H}_2^- + e^+$$

 σ = 6 x 10⁻¹⁵ cm² at 0.01 eV X. Urbain et al. J. Phys B (1986)

Inject $\overline{H^+}$ into \overline{p} plasma, $n = 10^6$ cm⁻³, T = 100K $R = 1.4 \times 10^{-3} \text{ s}^{-1}$ (~1/10 minutes)

$$\bar{H}^+ + \bar{p} \to \bar{H} + \bar{H}$$

 $\sigma = 1.1 \times 10^{-12} \text{ cm}^2 \text{ at } 0.01 \text{ eV}$ M. Stenrup et al. PRA (2009)

Hence, expect 1 \overline{H}_2^- for every ~200 \overline{H}^+ injected

GBAR: 1 \overline{H}^+ every 2 minutes, so 1 \overline{H}_2^- in ~ 6 hours

State Initialization: v, N

$$\bar{H}^+ + \bar{p} \rightarrow \bar{H}_2^-(v, N) + e^+$$

Reduce *v:* "Stark Quench" (Induce E1 decay)

$$\underline{E} = \underline{v} \times \underline{B} = (\underline{\omega} \times \underline{r}_{c}) \times \underline{B}$$

 $r_{\rm c} = 4 \text{ mm}, B = 10 \text{ T}$

Reduce N:

Step-wise $\Delta v = \pm 1$, $\Delta N = -2$ E2 $v = 0 \rightarrow v = 1 \rightarrow v = 0$...

Things to do

Experimental development:

- $H_2^+ e^-$ spin-flip detection
- H₂⁺ precision spectroscopy in a Penning trap
- \overline{H}_2^- making

Theory:

- Zeeman structure B = 0 10 T
- Stark quenching
- Raman transition rates
- \overline{H}_2^- making

Things to do

Experimental development:

- $H_2^+ e^-$ spin-flip detection
- H₂⁺ precision spectroscopy in a Penning trap
- \overline{H}_2^- making

<u>Theory</u>:

- Zeeman structure B = 0 10 T
- Stark quenching
- Raman transition rates
- \overline{H}_2^- making

Thanks for your attention!

Edmund Myers, LEAP 2018 Paris

Quantum Logic Spectroscopy?

Laser cool, detect motional state via change in fluorescence

How to make \bar{H}_2^-

$$e^{-} + \bar{H}_{2} \to \bar{H}_{2}^{-} + e^{+} + e^{-} \text{ (or } 2\gamma) \qquad (1)$$

$$\bar{p} + \bar{H} \to \bar{H}_{2}^{-} + \gamma \qquad (2)$$

$$\bar{H}(1s) + \bar{H}(n \ge 2) \to \bar{H}_{2}^{-} + e^{+} \qquad (3)$$

$$\bar{H}^{+} + \bar{p} \to \bar{H}_{2}^{-} + e^{+} \qquad (4)$$

Penning Trap: Cyclotron Frequency Ratio

Testing CPT with \overline{H}_2^- : (with one ion in a Penning trap)

- Antihydrogen molecular ion has advantages compared to antiprotons and antihydrogen
- Use cryogenic Penning trap: measure cyclotron frequency and positron spin-flip frequency: gives m(e⁺)/m(p)
- Positron spin-flip frequency can be used to identify state !!
- Hence, measure rotational and nuclear-spin Zeeman transitions, and also <u>ro-vibrational transitions</u> (non-destructively)
- Make \overline{H}_2^- from \overline{H}^+ (Gbar)

Tests of CPT using anti-protons

Compare mass and magnetic moments of p and \overline{p} in a Penning trap

- a) m/q is same to 9.0 x 10⁻¹¹ (Harvard 1999) 6.9 x 10⁻¹¹ (BASE 2015)
- b) g_p is same to 1.5 x 10⁻⁹ (BASE 2017) For proton, g_p measured to 3 x 10⁻¹⁰ (Mainz)

First trapping of anti-protons 1986

VOLUME 57, NUMBER 20

PHYSICAL REVIEW LETTERS

17 NOVEMBER 1986

First Capture of Antiprotons in a Penning Trap: A Kiloelectronvolt Source

G. Gabrielse, X. Fei, K. Helmerson, S. L. Rolston, R. Tjoelker, and T. A. Trainor Department of Physics, University of Washington, Seattle, Washington 98195

H. Kalinowsky and J. Haas

Gabrielse *et al*, (1999): $p, \overline{p} m/q$ same to 10^{-10}

Ulmer et al, (2017): p, \overline{p} magnetic moment same to 10^{-9}

Trapping and manipulating single anti-ions in Penning traps is (now) relatively easy

Edmund Myers, LEAP 2018 Paris