

Low-energy antiproton scattering

Alisher Kadyrov

Curtin University Perth, Australia

LEAP 2018, Paris

Acknowledgements

- Prof Igor Bray
- Prof Mike Charlton (Swansea, UK)
- Prof Ilya Fabrikant (Nebraska, USA)
- Dr Ilkhom Abdurakhmanov
- Charlie Rawlins
- Jackson Bailey
- Shukhrat Alladustov
- Kym Massen-Hane
- Ozlem Erkilic
- Joshua Faulkner

This work is supported by Australian Research Council

Outline

- Convergent close-coupling (CCC) approach to $Ps + \overline{p} \rightarrow \overline{H} + e^{-}$
 - Quantum-mechanical single-centre CCC
 - Quantum-mechanical two-centre CCC (including rearrangement)
- CCC approach to \overline{p} scattering on H and He
 - Semiclassical wave-packet CCC: WP-CCC
- Total and partial cross sections for \overline{H} formation
- o Total and differential cross sections for \overline{p} -impact ionisation of H and He

Why antiproton scattering?

- Several groups at CERN's Antiproton Decelerator facility plan to utilise reaction $Ps + \overline{p} \rightarrow \overline{H} + e^-$ to form antihydrogen
- The goal is to create \overline{H} atoms in sufficient quantities to measure spectroscopic and gravitational properties of antimatter
 - AEgIS collaboration will produce an H beam for deflectometry studies by exciting Ps atoms to Rydberg states
 - ATRAP collaboration has already observed reaction $Ps + \overline{p} \rightarrow \overline{H} + e^-$ following the production of highly-excited Ps
 - GBAR collaboration intends to use $Ps + \overline{p} \rightarrow \overline{H} + e^-$ followed by $Ps + \overline{H} \rightarrow \overline{H}^+ + e^-$ to form \overline{H}^+
- FLAIR and FAIR facilities at GSI: \overline{p} scattering on residual-gas atoms and molecules, like He and H₂
- ASACUSA, ELENA
- Antiproton therapy of cancer?

Modelling Ps-pbar scattering

• How to model

$$\mathsf{Ps}(n_i l_i) + \overline{\mathsf{p}} \rightarrow \overline{\mathsf{H}}(n_f l_f) + \mathrm{e}^{-1}$$

- Variational method: Humberston et al 1987, JPB 20, L25
- Very accurate but limited to Ps(1s)
- o CDW: Comini and Hervieux 2013, NJP 15, 095022
- CDW works at a high energies
- o CTMC: Krasnicky etal 2016, PRA 94, 022714
- Is classical treatment of Ps at low energies is valid?

CCC approach to 3-body problem

- Due to charge conjugation symmetry, reaction $Ps + \overline{p} \rightarrow \overline{H} + e^$ is equivalent to reaction $Ps + p \rightarrow H + e^+$
- The latter is the inverse process to Ps formation $e^+ + H \rightarrow Ps + p$

Pseudostate expansion

• The total wave function is a solution to the Schrödinger equation (SE)

 $(E-H)\Psi_{\alpha}^{+}=0$ with outgoing-wave boundary condition

• Expand the w.f. in a pseudostate basis

$$\Psi_{\alpha}^{+} = \sum_{n=1}^{\infty} f_{n} \varphi_{n} + \int d\varepsilon f_{\varepsilon} \Psi_{\varepsilon} \approx \sum_{n=1}^{N} f_{n} \phi_{n}$$

• How do we generate pseudostates?

$$\left\langle \phi_{f}\left|H_{T}\right|\phi_{i}\right\rangle = \varepsilon_{f}\delta_{fi}$$

• A linear combination of *N* Laguerre functions

CCC method: pseudostates

- This gives a set of negativeand positive-energy states which we call pseudostates
- With increasing N the negative-energy pseudostates converge to true discrete eigenstates of H
- Positive energy states provide a discretization of the continuum
- Alternative method: wave packets or bins

CCC equations

• Pseudostate expansion

$$0 = \left(\boldsymbol{E} - \boldsymbol{H}\right) \left| \boldsymbol{\Psi}_{i}^{*} \right\rangle \approx \left(\boldsymbol{E} - \boldsymbol{H}\right) \sum_{n=1}^{N} \boldsymbol{f}_{n} \left| \boldsymbol{\phi}_{n} \right\rangle$$

• For any given *N* we require that

$$0 = \left(\boldsymbol{E} - \boldsymbol{H}\right) \sum_{n=1}^{N} \boldsymbol{f}_{n} \left| \boldsymbol{\phi}_{n} \right\rangle$$

• The Bubnov-Galerkin principle (generalisation of the Ritz theorem):

$$\left\langle \phi_m \left| \left(E - H \right) \sum_{n=1}^N f_n \left| \phi_n \right\rangle = 0, \quad m = 1, \dots, N \right.$$

• Transform into a set of *NxN* momentum-space integral equations

CCC method in a nutshell

$$\left\langle \vec{q}_{f}, \phi_{f} \middle| T \middle| \phi_{i}, \vec{q}_{i} \right\rangle = \left\langle \vec{q}_{f}, \phi_{f} \middle| V \middle| \phi_{i}, \vec{q}_{i} \right\rangle + \sum_{r=1}^{N} \int d\vec{q} \frac{\left\langle \vec{q}_{f}, \phi_{f} \middle| V \middle| \phi_{r}, \vec{q} \right\rangle \left\langle \vec{q}, \phi_{r} \middle| T \middle| \phi_{i}, \vec{q}_{i} \right\rangle}{E - \varepsilon_{r} - q^{2} / 2\mu_{r} + i0}$$

- Solved in partial waves
- Total breakup cross section is obtained by summing the cross sections for excitation of the positive-energy pseudostates
- Convergence in cross sections is obtained by increasing *N*
- \circ e⁻ scattering on H, He, He-like targets, alkalis, inert gases, H₂⁺, H₂
- o Topical Review: Bray *et al.* 2017, JPB 50, 202001

CCC with rearrangement

2-centre CCC: associated difficulties

The total w.f. is expanded using two independent bases, one for each centre: \bigcirc

- This brings three difficulties into play. The combined basis is

 - •

 Non-orthogonal
 Image: numerical instabilities

 Over-complete
 Image: double counting?

3rd difficulty: Ps-formation matrix elements are significantly more complicated

2-centre CCC equations

• Again require our expansion to satisfy the SE

$$0 \approx \left(\boldsymbol{E} - \boldsymbol{H} \right) \left(\sum_{n=1}^{N} \boldsymbol{f}_{n} \left| \boldsymbol{\phi}_{n}^{\boldsymbol{H}} \right\rangle + \sum_{m=1}^{M} \boldsymbol{g}_{n} \left| \boldsymbol{\phi}_{m}^{\boldsymbol{P}s} \right\rangle \right)$$

• Project this on each pseudostate (Bubnov-Galerkin principle)

$$\begin{cases} \left\langle \phi_{n'}^{H} \middle| \left(E - H \right) \sum_{n=1}^{N} f_{n} \middle| \phi_{n}^{H} \right\rangle + \left\langle \phi_{n'}^{H} \middle| \left(E - H \right) \sum_{m=1}^{M} g_{n} \middle| \phi_{m}^{Ps} \right\rangle = 0 \qquad n' = 1, \dots, N \\ \left\{ \left\langle \phi_{m'}^{Ps} \middle| \left(E - H \right) \sum_{n=1}^{N} f_{n} \middle| \phi_{n}^{H} \right\rangle + \left\langle \phi_{m'}^{Ps} \middle| \left(E - H \right) \sum_{m=1}^{M} g_{n} \middle| \phi_{m}^{Ps} \right\rangle = 0 \qquad m' = 1, \dots, M \end{cases} \right\}$$

• This is a set of (N+M)x(N+M) integro-differential equations

2-centre CCC method in a nutshell

• Transform into a set of (N+M)x(N+M) momentum-space integral eqs

$$\left\langle \vec{q}_{f}, \phi_{f} \left| T \left| \phi_{i}, \vec{q}_{i} \right\rangle = \left\langle \vec{q}_{f}, \phi_{f} \left| V \left| \phi_{i}, \vec{q}_{i} \right\rangle + \sum_{r=1}^{N+M} \int d\vec{q} \frac{\left\langle \vec{q}_{f}, \phi_{f} \left| V \left| \phi_{r}, \vec{q} \right\rangle \right\rangle \left\langle \vec{q}, \phi_{r} \left| T \left| \phi_{i}, \vec{q}_{i} \right\rangle \right.}{E - \varepsilon_{r} - q^{2} / 2\mu_{r} + i0}\right\}$$

Now $\phi = \left\{ \phi^{H}, \phi^{Ps} \right\}$

- All direct and rearrangement matrix elements coupled
- Ps formation in continuum is included
- Total breakup cross section is obtained by summing the cross sections for excitation of the positive-energy pseudostates of both H and Ps
- Convergence in cross sections is obtained by increasing N and M
- e⁺ scattering on H, He, Mg, alkalis, H₂
- o Topical Review: Kadyrov & Bray 2016, JPB 50, 202001

Antihydrogen formation in $Ps(n_i l_i) + \bar{p}$

Very low energies relevant to \overline{H} experiments at CERN: $n_i \leq 3$

Kadyrov et al. 2015, PRL 114, 183201

Ps(nl) + p̄ scattering

Fabrikant et al. 2016, PRA 94, 012701

Extension of CCC to $n_i = 4$ and 5

- Krasnicky et al 2016, PRA 94, 022714:
 - \overline{H} -formation cross section σ is scaled as n_i^4
 - the 1/E dependence according to the CCC for $n_i = 3$
- Recently we extended the CCC to $n_i = 5$
- We established that the dramatic increase in the cross section for \overline{H} formation, when n_i is increased from 1 to 2 and from 2 to 3, was absent for the higher values of n_i .
- In the Ps kinetic energy region where the data for all n_i behave as 1/E
 - there is a factor of 3 between the cross section for $n_i = 5$ when compared to $n_i = 3$.
 - the factor of 30 increase between $n_i = 2$ and 3, and
 - a few orders of magnitude enhancement in the formation of \overline{H} when Ps in an $n_i = 2$ state over the ground state.

Quantum suppression

- Due to quantum-mechanical effects, the growth of the \overline{H} formation cross section with n_i is much slower than in the classical calculations
- This arises primarily due to the limited number of partial waves contributing to the process.

Quantum suppression

- For moderate values of n_i we predict $\sigma \sim n_i^2 / E$ scaling
- The threshold theory analysis confirms this trend
- Conclusion: quantum effects strongly suppress the increase of H
 formation cross section, in contrast to expectations from classical
 approaches
- If this trend persists at high n_i , then the implications for current experimental efforts, which aim to exploit efficient \overline{H} formation from excited-state Ps, could be important.
- For instance
 - $Ps(18) \rightarrow \sigma(CTMC)/\sigma(CCC) = 324$
 - $Ps(32) \rightarrow \sigma(CTMC)/\sigma(CCC) = 1024$
- o Details: Kadyrov et al 2017, Nature Commun. 8, 1544

CCC approach to pbar-atom collisions

A lab frame: the origin at the target, *z*-axis $\parallel \vec{v}$ and *x*-axis $\parallel \vec{b}$ Projectile position $\vec{R}(t) = \vec{b} + \vec{Z} = \vec{b} + \vec{v}t$

The w.f. is a solution to SC TDSE

$$i\frac{\partial\Psi(\vec{r},t)}{\partial t} = (H_{\tau} + V_{P})\Psi(\vec{r},t)$$

Expand Ψ in terms of pseudostates of H_{τ}

$$\Psi(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t) \exp(-i\varepsilon_{\alpha}t)\phi_{\alpha}(\vec{r})$$

 $\vec{r} = {\{\vec{r_1}, \vec{r_2}, ...\}}$ is a collective coordinate of all electrons

CCC approach to pbar-atom collisions

Then we get

$$i\dot{a}_{\alpha}(t) = \sum_{\beta} \exp[i(\varepsilon_{\alpha} - \varepsilon_{\beta})t]a_{\beta}(t)D_{\alpha\beta}$$

$$D_{\alpha\beta} = \left\langle \phi_{\alpha} \left| -\frac{1}{R(t)} + \sum_{i} \frac{1}{|\vec{R}(t) - \vec{r}_{i}|} \right| \phi_{\beta} \right\rangle$$

In matrix form $i\dot{a} = Da$

Pseudostates

$$\left\langle \phi_{\beta} \left| H_{\tau} \right| \phi_{\alpha} \right\rangle = \delta_{\beta \alpha} \varepsilon_{\alpha}$$

 Pseudostates are generated using an alternative method: wave packets or bins

Wave-packet continuum discretisation

• Advantages of WP: there are 3 $\left\langle \psi_{\vec{k}} \middle| \phi_{f} \right\rangle = \sqrt{\frac{2}{\pi}} (-i)^{l} e^{i\sigma_{l}} b_{nl}(k) Y_{lm}(\hat{k})$ $b_{nl}(k) = \int_{0}^{\infty} dr \varphi_{kl}(r) \ \varphi_{n}^{WP}(r) = \frac{1}{\sqrt{W_{n}}}$

Abdurakhmanov et al. 2016, PRA 94, 022703

Ionisation amplitude

$$T^{post} \neq \left\langle \vec{q}_{f}, \vec{k} \left| V \right| \Psi_{i}^{+} \right\rangle$$

 Surface-integral formulation of scattering theory Kadyrov *et al.* 2008, PRL 101, 230405 Kadyrov *et al.* 2009, AP 324, 1516:

$$\begin{aligned} \mathcal{T}^{post} &= \left\langle \Phi_0^- \left| \tilde{H} - E \right| \Psi_i^+ \right\rangle \\ &\approx \left\langle \Phi_0^- \left| I_N \left(\tilde{H} - E \right) I_N \right| \Psi_i^+ \right\rangle \\ &= \left\langle \vec{q}_f, \psi_{\vec{k}} \right| I_N \left(\tilde{H} - E \right) \left| \Psi_i^{N+} \right\rangle = \sum_{n=1}^N \left\langle \psi_{\vec{k}} \right| \phi_n \right\rangle \left\langle \phi_n, \vec{q}_f \left| \tilde{H} - E \right| \Psi_i^{N+} \right\rangle \\ &= \left\langle \psi_{\vec{k}} \right| \phi_f \right\rangle \tilde{T}_{fi} \quad \text{for} \quad \kappa^2 / 2 = \varepsilon_f \end{aligned}$$

Wave-packet CCC: \bar{p} + H(1s) ionisation

Wave-packet CCC: \bar{p} + H(1s) ionisation

Relativistic method: Bondarev et al 2017 PRA 95, 052709

WP-CCC: Abdurakhmanov et al. 2016, PRA 94, 022703 QM-CCC: Abdurakhmanov et al. 2011 JPB 44, 075204

He single ionisation by antiprotons

WP-CCC: Abdurakhmanov et al. 2017, PRA 96, 022702

Stopping power for antiproton in atoms

Bailey etal. 2015, Phys Rev A 92, 022707 and PRA 92, 052711

Conclusions

- Quantum-mechanical CCC approach is applied to antihydrogen formation in Ps collisions with antiproton
- Quantum suppression of the antihydrogen-formation cross section
- Results of the CTMC simulations might be too optimistic
- Developed CCC approach to antiproton scattering on atomic and molecular targets (H, He, inert gases, H₂, H₂O)
 - Quantum-mechanical: QM-CCC
 - Semiclassical: SC-CCC
 - Wave-packet: WP-CCC
- Antiproton scattering on residual gas in ELENA ring

TICS nondissociative ionisation of H₂

SC-CCC: Abdurakhmanov et al. 2013, PRL 111, 173201

TICS nondissociative ionisation of H₂

SC-CCC: Abdurakhmanov et al. 2013, PRL 111, 173201

TICS: H, He and H₂

