Production of light (anti-)(hyper-)nuclei in heavy-ion collisions

Silvia Masciocchi GSI Darmstadt and Heidelberg University

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

LEAP2018, Paris, March 15, 2018

- Ultra-relativistic heavy-ion collisions
- Particle production STAR and ALICE experiments
- Light nuclei measurements: motivation
- d, t, ³He, ⁴He measurements
- [Hypertriton ³_AH]
- [Exotica]
- Outlook

Heavy-ion collisions

Accelerate and collide large (fully stripped) ions:

Relativistic Heavy Ion Collider RHIC

Brookhaven National Laboratory

Large Hadron Collider LHC CERN, Geneva

Au ions, p, d, ³He Au-Au: $\sqrt{s_{NN}} = 7 - 200 \text{ GeV}$ Pb ions, p, Xe Pb-Pb: $\sqrt{s_{NN}} = 2.76, 5.02 \text{ TeV}$

Heavy-ion collisions

Create a small volume of matter at extremely high energy density:

- Volume ~ few 1000 fm³
- Energy density ~ several GeV/fm³
- Temperature of the system: few 10^{12} K \leftrightarrow Sun core: 15 x 10^{6} K

~ 160 MeV

\rightarrow QCD matter under extreme conditions !!

 \rightarrow deconfinement: transition to a Quark-Gluon Plasma

Heavy-ion collision evolution

Non-equilibrium evolution at early times:

• Gluon dominated, fast thermalization

Local thermal and chemical equilibrium: QGP

- Evolution ↔ relativistic fluid dynamics
- Expansion, dilution, cooling

Chemical freeze-out:

- Below a critical temperature, hadrons are formed
- Inelastic collisions cease → particle yields
 Kinetic freeze-out:
- Elastic collisions cease \rightarrow spectra

Therm. time ~ O(0.1 fm/c) $T_0 \sim O(500 \text{ MeV})$

Homog. Volume ~ 5000 fm³ Decoupling time ~ 10 fm/c 10^{-23} - 10^{-22} s

Particle production in heavy-ion collisions

One Pb-Pb collision at the LHC Total energy in c.m.s. : 1.04 PeV !

Heavy-ion experiments

- Large data statistics
- Excellent detectors for particle identification

Nucl.Phys. A971 (2018) 1-20

8

Identified particle yields

Nucl.Phys. A971 (2018) 1-20

Light nuclei and anti-nuclei:

Proton, deuteron, triton, ³He, ⁴He Hyper-triton ³_AHe

+ anti-particles

- Study their production mechanism
 - → Test model predictions, e.g. coalescence or thermal model
 - → Dependence on collision system (AA, pp, pA)
- Search for rarely produced anti- and hyper-matter
- Measure their properties (example: $^{3}_{\Lambda}$ He lifetime)
- Explore QCD inspired model predictions for (unusual) multi-baryon states

Production: statistical thermal model

Andronic, Braun-Munzinger-Stachel, Stöcker PLB 697, 203 (2011)

Thermodynamic approach to particle production in heavyion collisions

Thermal production of particles at chemical freeze-out, $T_{chem} \rightarrow$ determines particle yields

No information on microscopic processes

Production: coalescence

J. I. Kapusta, PRC21, 1301 (1980)

- Nuclei are formed by protons and neutrons which are nearby in space and have similar velocities (after kinetic freeze-out)
- Produced nuclei can break apart, and be eventually formed by final state coalescence
- Original idea rather simplistic. More elaborate ideas being worked on

Time Projection Chamber (TPC)

Time-Of-Flight detector (TOF)

Low momenta: identification via specific energy loss dE/dx by particles in the gas of the TPC

High momenta: velocity measurement with TOF is used to calculate the m² distribution

Time Projection Chamber: dE/dx

Phys.Rev. C93 (2016) 024917

Primarv

nucleus

Secondary

Entries / (1

10

nucleus

π

Reconstruction issues

- Absorption of anti-matter in detector material
- Secondary nuclei emitted by spallation from the detector material
 - Impact parameter

- Considerable energy loss of the heavy particles in the detector, and lack of correction for it
 Energy loss corresponds to slowing down of the particle along the trajectory
- Z=2 not properly considered in the energy loss

DCA_{xv} (cm)

- Deuteron, tritium, ³He
 - Spectra
 - Nuclei and anti-nuclei production yields
 - Mass difference between nuclei and anti-nuclei
- ⁴He: α and $\overline{\alpha}$ particles
 - Mass dependence of yields
- Coalescence parameters

- [Hyper-triton, its lifetime]
- [Exotica]

Deuteron and anti-deuteron spectra

Transverse momentum spectra:

"harder" with increasing centrality of the collision (Pb-Pb, p-Pb)

 \rightarrow signature of radial flow, due to the collective expansion of the system

ALICE-PUBLIC-2017-006

Phys.Rev. C97 (2018) no.2, 024615

S.Masciocchi@gsi.de

LEAP 2018, Heavy-ion collisions

Radial expansion

Internal pressure gradient \rightarrow fluid velocity in radial direction Depends on bulk viscosity $\zeta(T)$

Demonstrated by particle spectra

LEAP 2018, Heavy-ion collisions

Matter and anti-matter

... are produced in IDENTICAL amounts at the LHC

 $\iff \text{zero baryo-chemical potential } \mu_{\text{B}} \sim \text{net baryon density} \\ \text{at mid-rapidity}$

S.Masciocchi@gsi.de

Spectra and matter / antimatter ratio for ³He

Relevant for dark matter searches

Dark matter annihilation in the galactic halo results in matter – antimatter production: \rightarrow search for excess of antimatter!

 $\chi + \chi \to \gamma \gamma, \ e^+ e^-, \ p\bar{p}, \ d\bar{d}, \ \text{HeHe}, \dots$

Our data: crucial input to estimate backgrounds

10⁴

10³

10²

10

Light nuclei: test of CTP violation

The measurement of the difference between the ratios of mass and charge of deuterons (d) and anti-deuterons (\overline{d}) and of ³He and ³He confirms CPT invariance to an unprecedented precision for light nuclei

Anti-matter: ⁴He

2010 First observation by STAR Nature 473 (2011) 353 ~ 15 candidates

S.Masciocchi@gsi.de

LEAP 2018, Heavy

< dE/dx > (keV/cm)

Measurement of ⁴He and ⁴He in ALICE

Nucl.Phys. A971 (2018) 1-20

2011 data: 10 candidates

Nuclei production yields follow an exponential decrease with mass, as predicted by the thermal model

Coalescence parameter B_A

Baryons close in phase-space at freeze-out can form a (anti-)nucleus. Phase-space: space and momentum. Since nuclei are generally larger than the source, phase-space is reduced to momentum space.

Relation between the spectra of single nucleons and of nuclei with A nucleons

$$E_{A}\frac{dN_{A}}{d^{3}P_{A}} = B_{A} \left(E_{p}\frac{dN_{p}}{d^{3}P_{p}}\right)^{Z} \left(E_{n}\frac{dN_{n}}{d^{3}P_{n}}\right)^{N} \qquad P_{p}=P_{n}=P_{A}/A$$

 \rightarrow assume that protons and neutrons have the same mass and the same momentum spectrum:

$$E_{A}\frac{dN_{A}}{d^{3}P_{A}} = B_{A} \left(E_{p}\frac{dN_{p}}{d^{3}P_{p}}\right)^{A} \longrightarrow B_{A} = \frac{E_{A}\frac{dN_{A}}{d^{3}P_{A}}}{\left(E_{p}\frac{dN_{p}}{d^{3}P_{p}}\right)^{A}}$$

The simplest coalescence model expects flat B_A wrt transverse momentum

Deuteron: coalescence parameter B₂

Not flat \rightarrow problems for the simple coalescence model to describe the data

Work on "advanced coalescence" : dependence on source volume and dynamic

³He: coalescence parameter B₃

Coalescence parameter B_3 in pp collisions used as input of theory calculations to obtain estimate of background in the AMS experiment

S.Masciocchi@gsi.de

LEAP 2018, Heavy-ion collisions

Impact on dark matter searches

Coalescence parameter B_3 in pp collisions used as input of theory calculations to obtain estimate of background in the AMS experiment

Before ALICE's pp measurement

Impact on dark matter searches

Coalescence parameter B_3 in pp collisions used as input of theory calculations to obtain estimate of background in the AMS experiment

Impact on dark matter searches

Coalescence parameter B_3 in pp collisions used as input of theory calculations to obtain estimate of background in the AMS experiment

Summary and outlook

- Ultra-relativistic heavy-ion collisions: factory of matter, antimatter and hypermatter
- Nuclei production mechanism: models under investigation New data allow more measurements, more observables
- Open question: large and loosely bound objects created in an environment with temperature $\gg 10$ times the binding energy? $T_{chem} \approx 154$ MeV, $E_{binding} \approx 2.2(d) / 8.5(t) / 7.7(^{3}He)$ MeV, $E_{\Lambda} \approx 130$ keV

Snowballs in hell (Peter Braun-Munzinger)

- Excellent prospects:
 - ALICE detector upgrades
 - LHC Pb-Pb "high luminosity" starts in 2021
 - Plenty of high precision data!

LEAP 2018, Heavy-ion collisions

(Anti-)Hypertriton $^{3}_{\Lambda}$ H and $^{3}_{\Lambda}$ H

 Lightest hyper-nucleus m = 2.99116 ± 0.00005 GeV/c² lifetime ~ 215 ps

- Loosely bound state: B_∧ ≈ 130 keV
 Large and fragile object
- Reconstructed via decay topology:
 - 2-prong: ${}^{3}H \rightarrow {}^{3}He + \pi^{-}$
 - 3-prong: ${}^{3}H \rightarrow d + p + \pi^{-}$

(Anti-)Hypertriton: spectra

2011 Pb-Pb data, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Blast-wave fit used to extract the p_{τ} -integrated yield

Ratio consistent with unity

S.Masciocchi@gsi.de

ALI-PREL-130195

STAR Collaboration, arXiv:1710.00436v1 [nucl-ex]

$$\tau = \left(142^{+24}_{-21}(stat.) \pm 31(syst.)\right) ps$$

Puzzle: lifetime shorter than the one of the free Λ ?

 \rightarrow decisive measurements with 2018 Pb-Pb data !

S.Masciocchi@gsi.de

Search for exotica

H-dibaryon: hypothetical udsuds bound state

- First predicted by Jaffe PRL 38, 195617 (1977)
- Several predictions of bound and resonant states
- Recent lattice models predict weakly bound states

Inoue et al. PRL 106, 162001 (2011) Beane et al. PRL 106, 102002 (2011)

Renewed interest!

An possible bound state?

HypHI Collaboration observed signals in (d + π^-) and (t + π^-) mass distributions PRC 88, 041001 (2013)

Search for bound states with ALICE

Invariant mass analysis of the two hypothetical states: An and AA $\,$

S.Masciocchi@gsi.de

LEAP 2018, Heavy-ion collisions

Exotica: comparison with thermal yields

- Good fit quality for d, ${}^{3}\text{He}$, ${}^{3}_{\Lambda}\text{H}$, ${}^{4}\overline{\text{He}}$
- AA and An upper limits are factors > 25 below the expectations from the thermal model

Search for more exotica

Several models propose the existence of so-far undetected multi-baryon states

A. Andronic, private communication

Geometry of a Pb-Pb collision

Central collisions

- \rightarrow high number of **participants**
- \rightarrow high multiplicity
- \rightarrow higher energy density

Peripheral collisions

- \rightarrow low number of **participants**
- \rightarrow low multiplicity
- \rightarrow lower energy density

peripheral

central

Centrality: percentile of total hadronic cross section

Time Projection Chamber: dE/dx

ALICE-PUBLIC-2017-006

S.Masciocchi@gsi.de

LEAP 2018, Heavy-ion collisions

17

Matter and antimatter are not created equal

But we are getting there !

 ${}^{3}\overline{H}e/{}^{3}He \approx 10^{-11}$ (AGS,Cosmic) ${}^{3}\overline{H}e/{}^{3}He \approx 10^{-3}(SPS/CERN)$ ${}^{3}\overline{H}e/{}^{3}He \approx 0.5(RHIC/BNL)$ =0.875 GeV/c) 10 р р d d ³He ³He RHIC -2 -6 -4 0 2 4 6

Baryon Number

Zhangbu Xu

Elliptic flow of deuterons from proton v_2 using simple coalescence:

$$v_{2,d}(p_{\rm T}) = \frac{2v_{2,p}(p_{\rm T}/2)}{1 + 2v_{2,p}^2(p_{\rm T}/2)}$$

D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003)

Unsatisfactory description

Explore strongly-interacting matter at extreme conditions

Extreme temperatures $\approx 160 \text{ MeV} \approx 2 \times 10^{12} \text{ K}$ (Sun core: $15 \times 10^{6} \text{ K}$)

Extreme densities

≈ few GeV/fm³ (few times ground-state nuclear matter. $ε_{proton} ≈ 0.44 \text{ GeV/fm}^3$)

to study fundamental properties of QCD:

compressibility of nuclear matter, confinement, QCD-matter phases, hadronization, transport coefficients, etc.

46

Phase transition: first ideas

- **1965 Hagedorn**: limiting temperature for hadronic systems ~ 140 MeV
- 1975 Cabibbo and Parisi, Collins and Perry: asymptotic freedom → deconfined phase of matter at high densities or temperatures
- **1981 on, QCD on space-time lattice**: critical transition temperature from hadronic phase to the deconfined, plasma phase

Phase transition: first ideas

- **1965 Hagedorn**: limiting temperature for hadronic systems ~ 140 MeV
- 1975 Cabibbo and Parisi, Collins and Perry: asymptotic freedom → deconfined phase of matter at high densities or temperatures
- **1981 on, QCD on space-time lattice**: critical transition temperature from hadronic phase to the deconfined, plasma phase

S.Masciocchi@gsi.de

The QCD phase diagram

