Low Energy Antiproton Physics Conference 2018

Juhi Raj On behalf of the J-PET Collaboration

Study of time reversal symmetry in the decay of ortho-Positronium atoms using J-PET

Juhi Raj On behalf of the J-PET Collaboration

Jagiellonian University, Krakow, Poland

March 15, 2018

- Introduction of the J-PET detector
- Brief description of the discrete symmetry odd operator
- Methodology used to study the expectation values of the symmetry odd-operator
- Preliminary Experimental Results from the Collected Data
- Summary and future plans of the research

Jagiellonian Positron Emission Tomography

Juhi Raj On behalf of the J-PET Collaboration

Figure 1: 3-Layers with 192 modules in total (500mmx17mmx9mm)

J-PET	Standard PET
Polymers	Crystals
High acceptance	Low acceptance
Compton scattering	Photoelectric effect
Time domain	Energy domain
Digital electronics	Analog electronics

Talk by P.Moskal on "Tests of discrete symmetries in positronium decays with the J-PET detector"

Discrete Symmetry Odd-Operators for o-Ps

Juhi Raj On behalf of the J-PET Collaboration

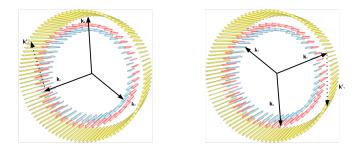
Table 1: Symmetry Odd-Operators

Operator	C	Ρ	Т	СР	СРТ
$\vec{S}.\vec{k_1}$	+	-	+	-	-
$S.(k_1xk_2)$	+	+	-	+	-
$(\vec{S}.\vec{k_1})(\vec{S}.(\vec{k_1}x\vec{k_2}))$	+	-	-	-	+
$\vec{\epsilon_1}.\vec{k_2}$	+	-	-	-	+
$\vec{S}.\vec{\epsilon_1}$	+	+	-	+	-
$\vec{S}.(\vec{k_2}x\vec{\epsilon_2})$	+	-	+	-	-

Where,

$$|\vec{k_1}| > |\vec{k_2}| > |\vec{k_3}|$$
 (1)

P.Moskal et. al., Acta Phys. Polon. B47 (2016) 509

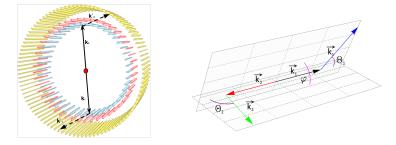

Time Reversal Symmetry Odd-Operator for o-Ps

Juhi Raj On behalf of the J-PET Collaboration

Table 2: Time Reversal Symmetry Odd-Operator

Operator	С	Ρ	Т	СР	СРТ
$\vec{\epsilon_1}.\vec{k_2}$	+	-	-	-	+

$$\vec{\epsilon_1} = (\vec{k_1} \times \vec{k_1'}) \tag{2}$$

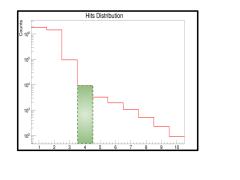


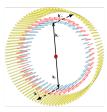
Time Reversal

Polarization of para-Positronium

Juhi Raj On behalf of the J-PET Collaboration

- p-Ps decay into even number of gamma
- Scatter Angle (θ)
- Angle between the scatter planes (φ)

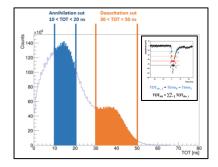


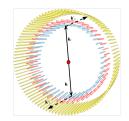

Poster by N.Krawczyk on "Feasibility study of the measurement of annihilation photons polarization with the J-PET detector

Desired number of Hits for p-Ps events

Juhi Raj On behalf of the J-PET Collaboration

- 1.0% of the total data collected.
- Selection of 4-hit events only.

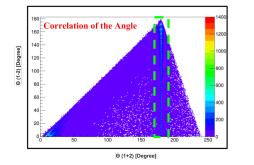


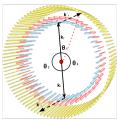


G.Korcyl et. al., Bio-Algorithms and Med-Systems 2014; 10(1): 37–40

Energy Loss used to differentiate the De-excitation gamma from Annihilation gamma

TOT - Time Over Threshold

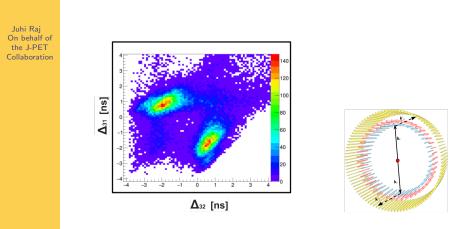




Poster by K.Dulski titled "Positronium decay study with the J-PET detector"

Angle Estimation

Where ,


$$\Theta(1+2) = \theta_1 + \theta_2 \tag{3}$$

and

$$\Theta(1-2) = \theta_1 - \theta_2 \tag{4}$$

D. Kaminska et al. (J-PET) Eur.Phys.J. C76 (2016), 445

Primary and Secondary Gamma Correlation

 $\Delta_{32} = (HitTimeDifference_{32}) - (CalculatedTimeDifference_{32})$ (5) $\Delta_{31} = (HitTimeDifference_{31}) - (CalculatedTimeDifference_{31})$ (6)

Compton Angles

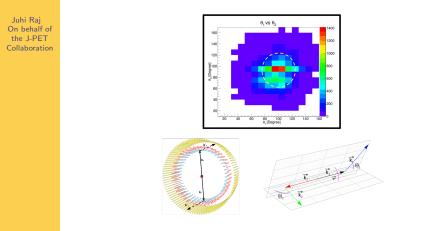
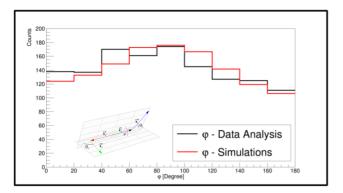



Figure 2: Angle between the Primary and Secondary Annihilation Photons

Angle between the Scattering Planes

Juhi Raj On behalf of the J-PET Collaboration

Figure 3: Angle between the two Scattering Planes

Summary:

- Discrete symmetries play a fundamental role in particle and nuclear physics.
- There is still a substantial lack of experimental data on fundamental symmetries tests in the leptonic sector.
- The J-PET detector has a potential to contribute in Time Reversal Symmetry and improve the limits by atleast one order of magnitude.
- The detector is under the commissioning and first test measurements were done.

