Positronium and Muonium two photon laser spectroscopy

Paolo Crivelli

Institute for Particle Physics and Astrophysics, ETH Zurich

LEAP 2018- 16th of March 2018 – Paris (France)

Leptonic atoms

Ps/Mu energy levels

$$R_M = R_\infty \left(\frac{1}{1+m/M}\right) = \begin{cases} R_\infty/2, & \text{for Ps.} \\ 0.995 \cdot R_\infty, & \text{for Mu} \end{cases}$$

Positronium 1S-2S transition

New measurement ongoing at ETHZ: goal 0.5 MHz

1) Check QED calculations (α^7 m)

2) Stringent test of SME See talk A. Vargas

3) Positron to electron mass ratio

Muonium 1S-2S spectroscopy

Experiment:

 $\Delta \nu_{1s2s}(expt.) = 2\,455\,528\,941.0(9.8)$ MHz Meyer et al. PRL84, 1136 (2000):

Theory:

 $\Delta \nu_{1s2s}$ (theory) = 2 455 528 935.4(1.4) MHz

Limited by knowledge of muon mass. QED calculations at 20 kHz

S. G. Karshenboim, Phys. Rep. 422, 1 (2005)

Reduced mass contribution: 1.187 THz (4800 ppm)

Additionally: $q_{\mu+}/q_{e-} = -1 - 1.1(2.1) \cdot 10^{-9}$

$$\implies m_{\mu^+}/m_{e^-} = 206.768\,38(17).$$

Muonium 1S-2S spectroscopy

Adapted from K. Jungmann DPG 2017 (Mainz)

Positronium/Muonium formation

Positronium formation

P. Crivelli et al. , Phys. Rev. A81, 052703 (2010)

Ps as a particle in a box

$$\lambda_{Ps} = 0.9 \text{ nm} \sqrt{1 \text{ eV}/E_{Ps}}$$

$$E_{Ps} = \frac{h^2}{2m d^2} \approx 0.8 \text{ eV}(1 \text{ nm}/d)^2$$

$$H = kT^2 \left(\frac{1}{Z(a)} \frac{dZ(a)}{dT} + \frac{1}{Z(b)} \frac{dZ(b)}{dT} + \frac{1}{Z(c)} \frac{dZ(c)}{dT}\right)$$

P. Crivelli et al. , Phys. Rev. A81, 052703 (2010)

Muonium (Mu)

Polarized surface muon beam generation

Low energy muon (LEM) beam @PSI

Larmor frequency: $\omega_{Mu} \simeq 103 \, \omega_{\mu^+}$

 $MuSR \rightarrow Mu$ is formed but is this emitted in vacuum?

Positron shielding technique (PST)

Positron shielding technique (PST)

PST principle

 $f_{\rm fit}(t) = n[(1 - F_{Mu}^v)f_0(t) + F_{Mu}^v f_{100}(t)] + n_{pp}f_{pp}(t)$

 \checkmark Vacuum Yield: F_{Mu}^{v}

PST results

A. Antognini (ETHZ), P. Crivelli (ETHZ), K. S. Khaw (ETHZ), K. Kirch, (ETHZ/PSI), B Barbiellini (NU Boston), L. Liszkay (CEA), T. Prokscha (PSI), E. Morenzoni (PSI), Z. Salman (PSI), A. Suter (PSI), PRL 108, 143401 (2012)

 $(38\pm4)\%$ at 250 K and $(20\pm4)\%$ at 100 K for 5 keV

Muonium spatial confinement

K. S. Khaw, A. Antognini, T. Prokscha, K. Kirch, L. Liszkay, Z., Salman, P. Crivelli, PRA 94, 022716 (2016)

Laser spectroscopy

The laser system

Requirements:

- High power (~kW) at 486 nm -> detectable signal
- Long term stability (continuous data taking ~days)
- Scanning of the laser ± 100 MHz

The laser system

Detection of Ps annihilations in the 2S state

Use bunched beam (buffer gas trap)

 \rightarrow Noise from **accidentals** reduced by 2 orders of magnitude

→ Reduction and correction of **systematic** effects

New beam line based on positron buffer gas trap

Excitation region

Bunching and extraction to a field free e-m region

D. A. Cooke PC et al. , J. Phys. B: At. Mol. Opt. Phys. 49 014001 (2016)

ON TARGET (@ground): Δt = 1 ns, σ =1 mm, B<0.1 G, 90 % efficiency

1) Photo-ionized Ps in the 2S excitation laser detected either by <u>SSPALS</u> or e⁺ or e⁻ in an MCP

2) Photo-ionization: external laser 532 nm

Photo-ionization in 486 nm laser 2S photoionization with 532 nm laser

3) Excitation 2S->20P: laser at 735 nm detection via field ionization

 \rightarrow correction for the 2nd order Doppler shift

$$\Delta \nu_{D2} = \nu_0 \frac{v^2}{2c^2}$$

 \rightarrow Other main systematic: AC Stark shift (corrected via extrapolation)

"Quasi" Doppler free excitation \rightarrow Ps velocity distribution

"Quasi" Doppler free excitation \rightarrow Ps velocity distribution

200

NEXT STEPS

- \rightarrow Combine CW laser with bunched positron beam.
- \rightarrow Absolute frequency reference: upgrade with output
- @ 972 nm frequency comb of Prof. Esslinger group (ETHZ).

GOAL: current source (10000 Ps/pulse @ 40 meV)

- \rightarrow Measurement of 1S-2S of Ps at a level about 5x10⁻¹⁰
- \rightarrow check QED calculation, SME test (sidereal variations)

POTENTIAL IMPROVEMENTS

- \rightarrow GBAR LINAC
- \rightarrow Colder Ps source?

MuoniuM lAser SpectroScopy

Current (1999) 1S-2S results

1S-2S Mu CW spectroscopy

Pulsed vs CW spectroscopy

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$
μ^+ beam energy	$4 { m MeV}$	$5 { m keV}$	$5 {\rm ~keV}$
M atoms	$600 \text{ s}^{-1} @ 300 \text{K}$	$1000 \text{ s}^{-1} @ 100 \text{ K}$	$1800 \text{ s}^{-1} @ 100 \text{ K}$
Spectroscopy	Pulsed laser	CW	CW
Experimental linewidth	$20 \mathrm{~MHz}$	$750 \mathrm{~kHz}$	300 kHz
Laser chirping	$10 \mathrm{MHz}$	$0 \mathrm{~kHz}$	0 kHz
Residual Doppler shift uncert.	$3.4 \mathrm{~MHz}$	$0 \mathrm{~kHz}$	0 kHz
2nd-order Doppler shift uncert.	$44 \mathrm{~kHz}$	15 kHz	1 kHz (corrected)
Frequency calibration uncert.	$0.8 \mathrm{MHz}$	$< 1 \mathrm{~kHz}$	$< 1 \mathrm{~kHz}$
Background events	2.8 events/day	1.6 events/day	1.6 events/day
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)

For CW reduction of the transition linewidth by a factor >20!

Pulsed vs CW spectroscopy

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$
μ^+ beam energy	$4 { m MeV}$	$5 { m keV}$	$5 {\rm ~keV}$
M atoms	$600 \text{ s}^{-1} @ 300 \text{K}$	$1000 \text{ s}^{-1} @ 100 \text{ K}$	$1800 \text{ s}^{-1} @ 100 \text{ K}$
Spectroscopy	Pulsed laser	CW	CW
Experimental linewidth	$20 \mathrm{~MHz}$	750 kHz	300 kHz
Laser chirping	$10 \mathrm{~MHz}$	0 kHz	0 kHz
Residual Doppler shift uncert.	3.4 MHz	0 kHz	0 kHz
2nd-order Doppler shift uncert.	$44 \mathrm{~kHz}$	15 kHz	1 kHz (corrected)
Frequency calibration uncert.	$0.8 \mathrm{MHz}$	$< 1 \mathrm{~kHz}$	$< 1 \mathrm{~kHz}$
Background events	2.8 events/day	1.6 events/day	1.6 events/day
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)

Systematic related to pulsed excitation eliminated

Pulsed vs CW spectroscopy

	RAL (1999)	Mu-MASS Phase1	Mu-MASS Phase2
μ^+ beam intensity	$3500 \times 50 \text{ Hz}$	$5000 \ {\rm s}^{-1}$	$> 9000 \text{ s}^{-1}$
μ^+ beam energy	$4 { m MeV}$	5 keV	5 keV
M atoms	$600 \text{ s}^{-1} @ 300 \text{K}$	$1000 \text{ s}^{-1} @ 100 \text{ K}$	$1800 \text{ s}^{-1} @ 100 \text{ K}$
Spectroscopy	Pulsed laser	CW	CW
Experimental linewidth	$20 \mathrm{MHz}$	$750 \mathrm{~kHz}$	300 kHz
Laser chirping	$10 \mathrm{MHz}$	$0 \mathrm{kHz}$	0 kHz
Residual Doppler shift uncert.	3.4 MHz	$0 \mathrm{kHz}$	0 kHz
2nd-order Doppler shift uncert.	44 kHz	$15 \mathrm{~kHz}$	1 kHz (corrected)
Frequency calibration uncert.	$0.8 \mathrm{MHz}$	$< 1 \mathrm{~kHz}$	$< 1 \mathrm{~kHz}$
Background events	2.8 events/day	1.6 events/day	1.6 events/day
Total number of 2S events	99	1900 (10 d)	> 7000 (40 d)
Statistical uncertainty	9.1 MHz	<100 kHz	10 kHz
Total uncertainty	9.8 MHz	<100 kHz (linewidth/10)	10 kHz (linewidth/30)

 \rightarrow Improvement in reach using the LEM beamline at PSI

Outlook -Mu spectroscopy

NEXT STEPS

- Upgrade Ps laser with fiber amplifier and SHG (CLBO) + UV enhancement cavity.
- Develop laser: $Mu(2S) \rightarrow Mu^*$ enhance the signal and measure atoms velocity.
- Test new targets for Mu prodution (see talk A. Soter)

GOAL:

- \rightarrow Improve muon mass (1 ppb) adn q_µ/q_e (1 ppt)
- Combined with HFS:
- \rightarrow stringent test of bound state QED (rel. accuracy 1 ppt)
- \rightarrow Rydberg costant free of finite size effects (few ppt), a (1 ppb)
- \rightarrow Test of SME

POTENTIAL IMPROVEMENTS:

1S-2S results will be statistically limited

 \rightarrow New low energy beam lines under development at PSI (Kirch group, ETHZ/PSI) and at JPARC \rightarrow 2 orders of magnitude more low energy muons expected.

Thank you to the organizers for the very kind invitation and your attention $\textcircled{\ensuremath{\Im}}$