
Heterogeneous computing using HPX for the
CMS trigger farm

Jean-Loup Tastet
Supervised by F. Pantaleo & V. Innocente

September 18, 2017

1 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX

4 Conclusion

2 / 35

The two-stage CMS trigger system

• Level 1 (hardware) trigger reduces the event rate to 100 kHz.
• (Software-based) High-Level Trigger must further reduce this rate to

a manageable level for physics analyses (∼ 1kHz).
• Complexity of reconstruction is combinatorial in the pile-up (PU).
• Current CPU-based farm almost reaches its limits at PU35.
• HL-LHC expected to produce PU200.

3 / 35

Possible solutions

• Improved algorithm: cellular automaton.
• Add accelerators (GPUs) to builder units.

Expensive, no load balancing.
• Add dedicated GPU nodes used by all builders.

Cost-efficient, maximal hardware utilization.
Heterogeneous computing
Requires a software framework to submit tasks to workers and fetch
results over the network.

4 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX

4 Conclusion

5 / 35

HPX

• Open-source framework for distributed computing.
• Developped on GitHub, mostly by academics (STE||AR group, ...).
• (Partial) implementation of the ParalleX execution model, designed

to enable scaling beyond the Exascale.
Avoid explicit thread management and global synchronization.
Expose as much parallelism as possible using coroutines.
Hide latency by suspending / migrating / resuming tasks on the fly.
Allows to perform automatic load-balancing / work-stealing.
Active Global Address Space to allow migrating tasks and data in a
seamless way.

• Still experimental: version 1.0 released last April.
• For our use case, we will mostly be using the remote execution

capabilities.

6 / 35

HPX: API

• Closely follows the development of ISO C++.
• Highly integrated with the STL and Boost.
• Very clean API, based on promises / futures / continuations to

manage dependencies.
• Futures represent results which are not available yet.
• Implements the Parallelism and Concurrency TS...

hpx::future<int> fut = hpx::async(&my_function, args...);
• ... and extend them to the distributed case:

hpx::future<int> fut =
hpx::async(my_action, locality, args...);

• Actions generalize functions and allow them to be remotely executed.
• All of their arguments must be made serializable.

7 / 35

Minimal example
int sum(std::vector<int> const &v)
{

return std::accumulate(v.begin(), v.end(), 0);
}
// Defines the necessary boilerplate for calling `sum` remotely
HPX_PLAIN_ACTION(sum, sum_action);

int main()
{

std::vector<int> v = { 1, 2, 3, 4, 5 };
// Schedule a `sum` action to run on the current locality
sum_action act;
hpx::future<int> fut =

hpx::async(act, hpx::find_here(), v);
// Request the result
// May suspend the current thread if not ready yet
int res = fut.get();
assert(res == 15);
return 0;

}
8 / 35

HPX for the High-Level Trigger

• Finding quadruplets can be mapped to parallel architectures using
an algorithm based on the cellular automaton.

• A first prototype (Patatrack) has shown that considerable gains are
achievable by implementing it on GPUs.

• The goal of this project was to evaluate the suitability of HPX for
offloading this step of the reconstruction to remote GPU nodes.

• An HPX-enabled version of Patatrack has been developped.

9 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX
Overall design
run() method
Main loop
Performance
Issues encountered

4 Conclusion

10 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX
Overall design
run() method
Main loop
Performance
Issues encountered

4 Conclusion

11 / 35

Overall design

• One CA worker (C++ class) per computing target (GPU, CPU
hardware thread, ...).

• Implemented as an HPX component (class acting as a locality, with
a unique address in the global address space).

• Custom constructor for each worker...
• ... but common API consisting of a single function:

virtual std::vector<Host::Quadruplet>
CellularAutomaton::run(Host::Event event) = 0;

• ... wrapped in a component action.

12 / 35

Data transfer
• Handled transparently by the HPX parcelport.
• Data structures and classes only need to be made serializable, e.g.

#include <hpx/include/serialization.hpp>

namespace Host {
struct Event
{

unsigned int eventId;
std::vector<int> rootLayers;
std::vector<Host::LayerHits> hitsLayers;
std::vector<Host::LayerDoublets> doublets;
// Same interface as Boost::serialization, but faster
template<typename Archive>
void serialize(Archive& ar, unsigned int version)
{

ar & eventId & rootLayers & hitsLayers & doublets;
}

};
} // namespace Host

13 / 35

GPU workers

• Only GPU workers (hardest part) implemented as part of this project.
• Extending it to CPU workers should be straightforward.
• GPUs programmed and accessed using the Nvidia CUDA kernel

language and API.
• Kernels in separate shared library, with standard C++ API.
• HPX-thread-safe: resources are requested by threads by querying the

result of a future.

14 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX
Overall design
run() method
Main loop
Performance
Issues encountered

4 Conclusion

15 / 35

CUDACellularAutomaton::run() structure
std::vector<Host::Quadruplet>
CUDACellularAutomaton::run(Host::Event event)
{

// hpx::lcos::local::channel<unsigned int> resourceQueue;
auto f_bufferIndex = resourceQueue.get();
// May suspend if no buffer available
const unsigned int bufferIndex = f_bufferIndex.get();

copyEventToPinnedBuffers(event, bufferIndex);

/* Same thing for streams... */

// No HPX calls beyond this point, to avoid suspending
cudaSetDevice(gpuIndex);
asyncCopyEventToGPU(bufferIndex, streamIndex);

/* ... */
}

16 / 35

CUDACellularAutomaton::run() structure
std::vector<Host::Quadruplet>
CUDACellularAutomaton::run(Host::Event event)
{

/* ... */

// Define grid and block dimensions
const std::array<unsigned int, 3> blockSize{256, 1, 1};
const std::array<unsigned int, 3> numberOfBlocks_create{

32, h_events[bufferIndex].numberOfLayerPairs, 1};

// Call kernels through C++ wrappers
kernel::create(

numberOfBlocks_create, blockSize,
0, streams[streamIndex],
/* device pointers */);

/* ... */
}

17 / 35

CUDACellularAutomaton::run() structure
std::vector<Host::Quadruplet>
CUDACellularAutomaton::run(Host::Event event)
{

/* ... */

// Fetch results
asyncCopyResultsToHost(streamIndex, bufferIndex);

// Reset the CA
asyncResetCAState(streamIndex);

// Suboptimal: blocks the HPX thread without suspending it
// Presumed bottleneck
cudaStreamSynchronize(streams[streamIndex]);

/* error handling omitted */

/* ... */
}

18 / 35

CUDACellularAutomaton::run() structure

std::vector<Host::Quadruplet>
CUDACellularAutomaton::run(Host::Event event)
{

/* ... */

// Create quadruplet vector
auto quadruplets = makeQuadrupletVector(bufferIndex);

// Return resources, so other threads can use them
resourceQueue.set(bufferIndex);
streamQueue.set(streamIndex);

// Return result
return quadruplets;

}

19 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX
Overall design
run() method
Main loop
Performance
Issues encountered

4 Conclusion

20 / 35

CA creation

auto const localities = hpx::find_all_localities();
std::vector<hpx::future<hpx::id_type>> f_ca(nGPUs);

for (std::size_t i = 0 ; i < nGPUs ; ++i) {
f_ca[i] = hpx::new_<CUDACellularAutomaton>(

localities[i % localities.size()],
gpuIndices[i],
/* other args */

);
}

std::vector<hpx::id_type> cellularAutomatons(nGPUs);
for (std::size_t i = 0 ; i < nGPUs ; ++i) {

cellularAutomatons[i] = f_ca[i].get();
}

21 / 35

Naive attempt: submit all tasks at once

std::vector<hpx::future<QuadrupletVector>>
f_allQuadruplets(nEvents);

// Eagerly send events to CAs in round-robin fashion
for (std::size_t n = 0 ; n < nEvents ; ++n) {

auto const &ca = cellularAutomatons[n % nGPUs];
f_allQuadruplets[n] =

hpx::async(ca_action, ca, events[n]);
}

// Wait for the results
hpx::wait_all(f_allQuadruplets);

• Result: the machine goes out of memory fairly quickly...

22 / 35

Better solution: batch processing
while (idx < nEvents)
{

const std::size_t nextBatchIdx =
std::min(idx + batchSize, nEvents);

// Send futures
for (std::size_t i = idx ; i < nextBatchIdx ; ++i) {

const auto &ca = cellularAutomatons[i % nGPUs];
const auto &evt = events[i % nEvents];
f_allQuadruplets[i] = hpx::async(ca_action, ca, evt);

}

// Wait for the results in-order
for (std::size_t i = idx ; i < nextBatchIdx ; ++i) {

allQuadruplets[i] = f_allQuadruplets[i].get().size();
}

idx = nextBatchIdx;
}

23 / 35

Further improvements

• Wait for the results in another HPX thread, launched using
hpx::async before even starting to send the next batch.

• Parallelize the main loop (one thread per CA worker) using
hpx::parallel::for_loop. This automatically takes care of
load-balancing.

• Send batches of events from several threads to each worker, to keep
them constantly busy.

24 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX
Overall design
run() method
Main loop
Performance
Issues encountered

4 Conclusion

25 / 35

Number of threads / streams per GPU (1 GPU)

• One active HPX thread per CUDA stream.

●

●

●

●

●

●

●
● ● ● ● ●

Number of streams (single GPU)

P
ro

ce
ss

ed
 e

ve
nt

 r
at

e
[H

z]

1 2 3 4 5 6 7 8 9 10 11 12

500

600

700

800

900

26 / 35

Number of threads / streams per GPU (8 GPUs)
• Max. 48 HPX threads actually executing at the same time.
• cudaDeviceSynchronize blocks without suspending.
• Total number of streams running in parallel is below 48.

●

●

●

●

●
● ●

●
●

●

●

●

Number of streams per GPU (8 GPUs)

P
ro

ce
ss

ed
 e

ve
nt

 r
at

e
[H

z]

1 2 3 4 5 6 7 8 9 10 11 12

3500

4000

4500

5000

5500

27 / 35

Weak scaling
• Benchmark: process 200000 events per GPU (steady state).

●

●

●

●

●

●

●
●

Number of GPUs

E
ve

nt
 p

ro
ce

ss
in

g
ra

te
 [H

z]

1 2 3 4 5 6 7 8

0

1000

2000

3000

4000

5000

6000

7000

● Patatrack (HPX)
Patatrack (original, GPU only)
Patatrack (original, hybrid)
Perfect scaling (extrapolation)

28 / 35

Weak scaling (relative)

●

●
●

●

●

●

●

●

1 2 3 4 5 6 7 8

0.75

0.80

0.85

0.90

0.95

1.00

Number of GPUs

R
at

e
fo

r
N

 G
P

U
s

/ (
N

 ·
 r

at
e

fo
r

1
G

P
U

)

29 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX
Overall design
run() method
Main loop
Performance
Issues encountered

4 Conclusion

30 / 35

HPX issues

• HPX still quite experimental.
• Fast-moving target.
• Documentation is very scarce and can be extremely outdated.
• Only reliable documentation: source code and unit tests.
• Heavy reliance on C macros :-(
• Heavy use of unconstrained templates → cryptic error messages.
• Only part of ParalleX is currently implemented.
• Still no standard API to manage nodes / NUMA domains /

accelerators.

31 / 35

HPX issues

• All issues have been duly reported.

32 / 35

CUDA issues

• Very hard to debug (but good tools available).
• Memory management is awful ! (it is basically C).
• NVCC is not fully standard conformant.

Cannot compile HPX.
All device code must be hidden in a shared library.

• CUDA runtime is OS-thread-safe but not HPX-thread-safe
(relies on per-OS-thread global state for the device selection).

33 / 35

1 Why heterogeneous computing ?

2 HPX for heterogeneous computing

3 Porting Patatrack to HPX

4 Conclusion

34 / 35

Conclusion

• HPX still quite experimental, but very promising.
• Poor documentation. Can be difficult to get started with.
• Standard-based API is a Good Thing™, could help adoption.
• Needs to mature a bit. C++ concepts would help.
• Most “blocking” issues were related to CUDA interoperability.
• There is ongoing work to address them on the HPX side.
• CPU overhead can be significant...
• ... but would be there anyway in any heterogeneous framework.
• MPI-based ad-hoc code could do the job...
• ... but HPX much more generic and extensible.

35 / 35

	Why heterogeneous computing ?
	HPX for heterogeneous computing
	Porting Patatrack to HPX
	Overall design
	run() method
	Main loop
	Performance
	Issues encountered

	Conclusion

