Heterogeneous computing using HPX for the
CMS trigger farm

Jean-Loup Tastet
Supervised by F. Pantaleo & V. Innocente

September 18, 2017

CMS,
O\

7/ i \\

I

Why heterogeneous computing ?

The two-stage CMS trigger system

Level 1 (hardware) trigger reduces the event rate to 100 kHz.

(Software-based) High-Level Trigger must further reduce this rate to
a manageable level for physics analyses (~ 1kHz).

= Complexity of reconstruction is combinatorial in the pile-up (PU).
Current CPU-based farm almost reaches its limits at PU35.
HL-LHC expected to produce PU200.

Possible solutions

= Improved algorithm: cellular automaton.

= Add accelerators (GPUs) to builder units.
m Expensive, no load balancing.

= Add dedicated GPU nodes used by all builders.
m Cost-efficient, maximal hardware utilization.
u Heterogeneous computing

m Requires a software framework to submit tasks to workers and fetch
results over the network.

HPX for heterogeneous computing

HPX

O HPX

Open-source framework for distributed computing.
Developped on GitHub, mostly by academics (STE||AR group, ...).

(Partial) implementation of the ParalleX execution model, designed
to enable scaling beyond the Exascale.
m Avoid explicit thread management and global synchronization.
Expose as much parallelism as possible using coroutines.

Hide latency by suspending / migrating / resuming tasks on the fly.

n

[]

m Allows to perform automatic load-balancing / work-stealing.

m Active Global Address Space to allow migrating tasks and data in a

seamless way.

Still experimental: version 1.0 released last April.
For our use case, we will mostly be using the remote execution
capabilities.

HPX: API

Closely follows the development of 1ISO C++.
Highly integrated with the STL and Boost.

Very clean API, based on promises / futures / continuations to
manage dependencies.

Futures represent results which are not available yet.

Implements the Parallelism and Concurrency TS...

hpx::future<int> fut = hpx::async(&my_function, args...);
. and extend them to the distributed case:

hpx::future<int> fut =
hpx: :async(my_action, locality, args...);

Actions generalize functions and allow them to be remotely executed.
All of their arguments must be made serializable.

Minimal example

int sum(std::vector<int> const &v)

{

}

return std::accumulate(v.begin(), v.end(), 0);

// Defines the necessary boilerplate for calling “sum™ rTemotely
HPX_PLAIN_ACTION(sum, sum_action);

int main()

{

std::vector<int> v = { 1, 2, 3, 4, 5 };
// Schedule a “sum’ action to run on the current locality
sum_action act;
hpx::future<int> fut =
hpx: :async(act, hpx::find_here(), v);
// Request the result
// May suspend the current thread if not ready yet
int res = fut.get();
assert(res == 15);
return O;

HPX for the High-Level Trigger

= Finding quadruplets can be mapped to parallel architectures using
an algorithm based on the cellular automaton.

= A first prototype (Patatrack) has shown that considerable gains are
achievable by implementing it on GPUs.

= The goal of this project was to evaluate the suitability of HPX for
offloading this step of the reconstruction to remote GPU nodes.

= An HPX-enabled version of Patatrack has been developped.

Porting Patatrack to HPX
m Overall design
m run() method
m Main loop
m Performance
m Issues encountered

10/35

Porting Patatrack to HPX
m Overall design

11/35

Overall design

= One CA worker (C++ class) per computing target (GPU, CPU
hardware thread, ...).

= Implemented as an HPX component (class acting as a locality, with
a unique address in the global address space).

= Custom constructor for each worker...
= ... but common API consisting of a single function:

virtual std::vector<Host::Quadruplet>
CellularAutomaton: :run(Host: :Event event) = 0;

= ... wrapped in a component action.

Data transfer

= Handled transparently by the HPX parcelport.
= Data structures and classes only need to be made serializable, e.g.

#include <hpz/include/serialization.hpp>

namespace Host {
struct Event

{
unsigned int eventId;
std::vector<int> rootlayers;
std: :vector<Host::LayerHits> hitsLayers;
std: :vector<Host::LayerDoublets> doublets;
// Same interface as Boost::sertalization, but faster
template<typename Archive>
void serialize(Archive& ar, unsigned int version)
{
ar & eventld & rootLayers & hitsLayers & doublets;
by
};

} // namespace Host

13/35

GPU workers

= Only GPU workers (hardest part) implemented as part of this project.

= Extending it to CPU workers should be straightforward.

= GPUs programmed and accessed using the Nvidia CUDA kernel
language and API.

= Kernels in separate shared library, with standard C++ API.

= HPX-thread-safe: resources are requested by threads by querying the
result of a future.

Porting Patatrack to HPX

m run() method

15/35

CUDACellularAutomaton: :run() structure

std: :vector<Host::Quadruplet>
CUDACellularAutomaton: :run(Host: :Event event)

{

// hpz::lcos::local::channel<unsigned int> resourcelueue;

auto f_bufferIndex = resourceQueue.get();
// May suspend if no buffer avatilable
const unsigned int bufferIndex = f_bufferIndex.get();

copyEventToPinnedBuffers(event, bufferIndex) ;

/* Same thing for streams... */

// No HPX calls beyond this point, to avoid suspending
cudaSetDevice (gpulndex) ;

asyncCopyEventToGPU(bufferIndex, streamIndex);

/* ... *x/

s

16 /35

CUDACellularAutomaton: :run() structure

std: :vector<Host::Quadruplet>
CUDACellularAutomaton: :run(Host: :Event event)
{

/x .. x/

// Define grid and block dimenstions

const std::array<unsigned int, 3> blockSize{256, 1, 1};

const std::array<unsigned int, 3> numberOfBlocks_create{
32, h_events[bufferIndex] .numberOfLayerPairs, 1};

// Call kernels through C++ wrappers
kernel: :create(
number0fBlocks_create, blockSize,
0, streams[streamIndex],
/* device pointers */);

/* ... *x/

17/35

CUDACellularAutomaton: :run() structure

std: :vector<Host::Quadruplet>
CUDACellularAutomaton: :run(Host: :Event event)
{

V4 I 4

// Fetch results
asyncCopyResultsToHost (streamIndex, bufferIndex);

// Reset the CA
asyncResetCAState(streamIndex) ;

// Suboptimal: blocks the HPX thread without suspending it
// Presumed bottleneck
cudaStreamSynchronize (streams [streamIndex]) ;

/* error handling omitted */

/* ... x/

18/35

CUDACellularAutomaton: :run() structure

std: :vector<Host::Quadruplet>
CUDACellularAutomaton: :run(Host: :Event event)
{

VI 4

// Create quadruplet wvector
auto quadruplets = makeQuadrupletVector (bufferIndex);

// Return resources, so other threads can use them
resourceQueue.set (bufferIndex) ;

streamQueue.set (streamIndex) ;

// Return result
return quadruplets;

19/35

Porting Patatrack to HPX

m Main loop

20/35

CA creation

auto const localities = hpx::find_all_localities();
std: :vector<hpx::future<hpx::id_type>> f_ca(nGPUs);

for (std::size_t i = 0 ; i < nGPUs ; ++i) {
f_cali] = hpx::new_<CUDACellularAutomaton>(
localities[i % localities.size()],
gpulndices[i],
/* other args */
);
}

std: :vector<hpx::id_type> cellularAutomatons(nGPUs) ;

for (std::size_t i = 0 ; i < nGPUs ; ++i) {
cellularAutomatons[i] = f_cal[i]l.get();

}

21 /3¢

Naive attempt: submit all tasks at once

std: :vector<hpx: :future<QuadrupletVector>>
f_allQuadruplets(nEvents);

// Eagerly send events to CAs in round-robin fashion
for (std::size_t n = 0 ; n < nEvents ; ++n) {
auto const &ca = cellularAutomatons[n % nGPUs];
f_allQuadruplets([n] =
hpx::async(ca_action, ca, events[n]);

3

// Wait for the results
hpx::wait_all(f_allQuadruplets);

= Result: the machine goes out of memory fairly quickly...

22 /3¢

Better solution: batch processing

while (idx < nEvents)
{
const std::size_t nextBatchIldx =
std: :min(idx + batchSize, nEvents);
// Send futures
for (std::size_t i = idx ; i < nextBatchIdx ; ++i) {
const auto &ca = cellularAutomatons([i % nGPUs];
const auto &evt = events[i ’, nEvents];
f_allQuadruplets[i] = hpx::async(ca_action, ca, evt);

}

// Wait for the results in-order

for (std::size_t i = idx ; i < nextBatchIdx ; ++i) {
allQuadruplets[i] = f_allQuadruplets([i].get().size();

}

idx = nextBatchIdx;

Further improvements

= Wait for the results in another HPX thread, launched using
hpx: :async before even starting to send the next batch.

= Parallelize the main loop (one thread per CA worker) using
hpx::parallel::for_loop. This automatically takes care of
load-balancing.

= Send batches of events from several threads to each worker, to keep
them constantly busy.

24 /3¢

Porting Patatrack to HPX

m Performance

25/35

Number of threads / streams per GPU (1 GPU)

= One active HPX thread per CUDA stream.

900 —

800 —

700 —

600 —

Processed event rate [Hz]

500 —

T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12

Number of streams (single GPU)

26 /35

Number of threads / streams per GPU (8 GPUs)

= Max. 48 HPX threads actually executing at the same time.
= cudaDeviceSynchronize blocks without suspending.

= Total number of streams running in parallel is below 48.

|
.

5500 .

5000 .

Processed event rate [Hz]
I ~
o a1
o o
) S
! !

3500

Number of streams per GPU (8 GPUs)

27/ 3¢

Weak scaling

= Benchmark: process 200000 events per GPU (steady state).

7000 —

— 6000 —

Hz

Event processing rate

1000 o

5000 —

w Py
o (=}
o o
o o

|

2000 —

A
n

Patatrack (HPX)

Patatrack (original, GPU only)

Patatrack (original, hybrid)

Perfect scaling (extrapolation)

T
4

T T T
5 6 7

Number of GPUs

T
8

28/35

Weak scaling (relative)

!
!
!
!
I
I
i
.
i
!
!
i
i
i
I
I
!
\
!
!
!
!
i
!
:
i
i
i
i
I
I
!
!
!
!
!
!
i
I
!
i
i
i
i
I
I
!
!
!
!
!
.
.
.
i
o
i
I

o

S

-

T T T T T
o) o [T} o 0
9 © @ ® ~
o (=) [=) (=] [=)
NdO T 10} 31el - N) / SN N 10} ayey

Number of GPUs

29/35

Porting Patatrack to HPX

m Issues encountered

30/35

HPX issues

= HPX still quite experimental.

= Fast-moving target.

= Documentation is very scarce and can be extremely outdated.

= Only reliable documentation: source code and unit tests.

= Heavy reliance on C macros :-(

= Heavy use of unconstrained templates — cryptic error messages.
= Only part of ParalleX is currently implemented.

= Still no standard APl to manage nodes / NUMA domains /
accelerators.

HPX

issues

= All issues have been duly reported.

@ STEINAR-GROUP/hpx Destroying a non-empty channel causes an assertion failure
mmﬁm

®

33

@

@

#2890 opened 10 days ago by Element-126

110

STENAR-GROUP/hpx Callinga __host__function froma(_host) _device__function
breaks HPX build with NVCC 9 in C++14 mode c-morv: [T |compler: nvee

type: defect

#2838 opened on Aug 16 by Element-126 1

STEIIAR-GROUP/hpx Unresolved extern variables and Segmentation fault with CUDA Clang++
Mﬁm

#2837 opened on Aug 16 by Element-126 1

10

10

STEIIAR-GROUP/hpx “constexpt” functions with “void' return

CUDA 8.0. compiler: nvee. [P
#2835 by Element-126 was closed 29 days ago

STEIIAR-GROUP/hpx "parallel/executors/execution_fwd.hpp' causes compilation failure in

C++11 mode.
#2831 by Element 126 was closed on Aug 14

STEIIAR-GROUP/hpx HPX fails to compile with HPX_WITH_CUDA=ON and the new CUDA 9.0

type: compatiblilty Issue

110

;1A platiorm: CUDA | type: compatibility issue

#2815 by Element-126 was closed on Aug 11

110

e break compilation with

14

32/35

CUDA issues

= Very hard to debug (but good tools available).
= Memory management is awful ! (it is basically C).
= NVCC is not fully standard conformant.

m Cannot compile HPX.
m All device code must be hidden in a shared library.

= CUDA runtime is OS-thread-safe but not HPX-thread-safe
(relies on per-OS-thread global state for the device selection).

Conclusion

34/35

Conclusion

= HPX still quite experimental, but very promising.

= Poor documentation. Can be difficult to get started with.

= Standard-based API is a Good Thing™, could help adoption.

= Needs to mature a bit. C++ concepts would help.

= Most “blocking" issues were related to CUDA interoperability.
= There is ongoing work to address them on the HPX side.

= CPU overhead can be significant...

= ... but would be there anyway in any heterogeneous framework.
= MPI-based ad-hoc code could do the job...

= ... but HPX much more generic and extensible.

	Why heterogeneous computing ?
	HPX for heterogeneous computing
	Porting Patatrack to HPX
	Overall design
	run() method
	Main loop
	Performance
	Issues encountered

	Conclusion

