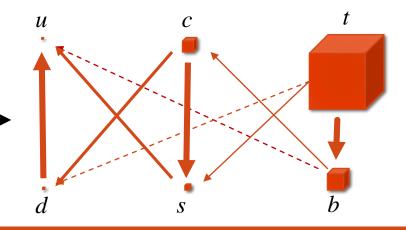


TESTING LEPTON UNIVERSALITY IN RARE AND SEMILEPTONIC B DECAYS AT LHCb

Experimental Seminar SLAC National Accelerator Laboratory

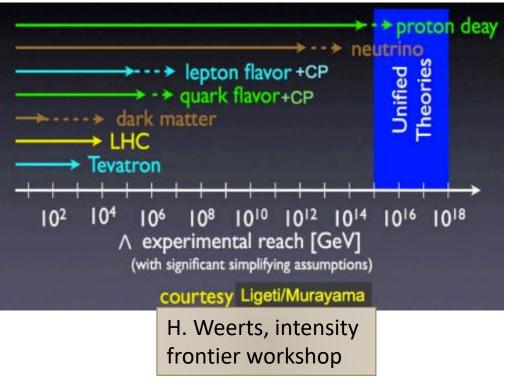

Tuesday 8 August 2017

BRIAN HAMILTON

B Physics Basics

- Standard model flavor structure is described by the Cabibbo-Kobayashi-Maskawa mixing matrix
- V_{CKM} hierarchical & nearly diagonal
 - Quark flavor transitions mixing different generations suppressed
 - 3rd generation especially "isolated"
- This leads to suppression of all tree-level b quark decay amplitudes
 - /Vcb/~0.04
 - Makes B physics quite sensitive to NP generically misaligned with CKM
- Also leads to long b quark lifetime: $c\tau_B \sim 400 \mu m!$ (= about 2x charm lifetime)
 - Very Important for hadron collider b tagging/reconstruction
 - Allows access to time-dependent phenomena

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

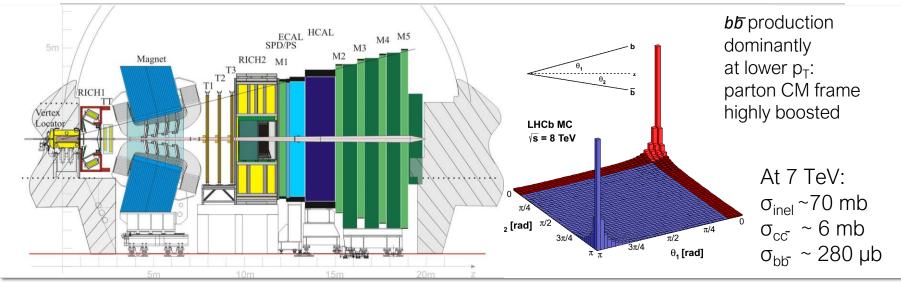


Flavor Physics Reach

- The reach of flavor physics comes from sensitivity to heavy intermediate states
 - These contribute in the form of higher dimension operators, eg

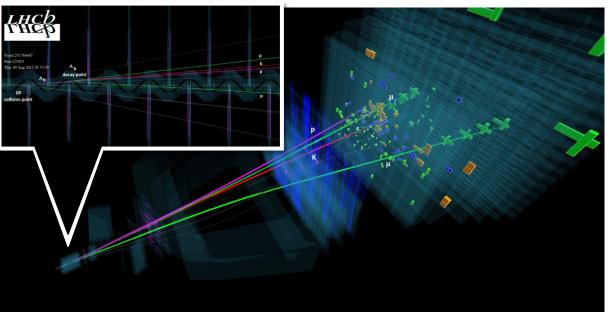
 $\frac{c(q'\Gamma q)(f'\Gamma f)}{\Lambda^2}$

- Reach in Λ is potentially quite large (or, alternately, can probe very weak couplings at Λ~TeV)
- •Study processes which are highly suppressed by small parameters or loop factors in the SM
 - Smaller SM contribution \to New Physics (NP) interference or enhancement easier to observe for larger $\Lambda_{\rm NP}$

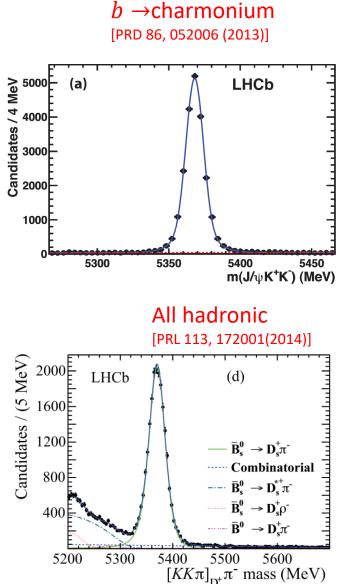

Lepton universality

- In Standard Model (SM), charged lepton flavors are *identical copies* of one another
 - Electroweak couplings are trivially equal for all three flavors by construction, only Higgs Yukawa couplings differentiate them
 - Amplitudes for processes involving e, μ, τ must all be identical up to explicit mass dependence (phase space, fermion helicity)
 - Examples:
 - $\mathcal{B}(Z \to e^+e^-) = \mathcal{B}(Z \to \mu^+\mu^-) = \mathcal{B}(Z \to \tau^+\tau^-)$
 - $\mathcal{B}(\psi(2S) \rightarrow e^+e^-) = \mathcal{B}(\psi(2S) \rightarrow \mu^+\mu^-) = 2.574 \times \mathcal{B}(\psi(2S) \rightarrow \tau^+\tau^-)$ (P = 1840 MeV for e^+e^- vs 489 MeV for $\tau^+\tau^-$)
 - Tests of SM LFU have been performed in a number of different systems over the years
 - $Z \to \ell \ell, W \to \ell \nu, \tau \to \ell \nu \overline{\nu}, \pi \to \ell \nu, K \to \pi \ell \nu$, etc...

• Universality of the EW interactions does not necessarily imply universality of physics beyond the SM


- New physics preferentially coupling to the 3rd generation is usually less well-constrained, and can modify SM charged and neutral currents
 - Examples: A^0 , H^{\pm} , new vectors coupled to SM Higgs doublet, leptoquarks
- Many LFU violating NP models are strongly constrained by direct searches, but can be tuned to evade these bounds while preserving their effect on heavy flavor observables

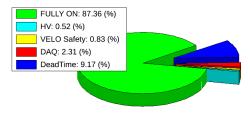
The LHCb Detector



- Focus on forward direction to exploit highly-boosted b quark production in multi-TeV collisions: cover 27% (25%) of (pair) production while instrumenting < 3% of the solid angle (value!)
- Single arm spectrometer optimized for beauty and charm physics at large η:
 - Trigger: ~90% efficient for dimuon channels, ~30% for all-hadronic
 - Tracking: $\sigma_{\!p}/p \thicksim 0.4\% {-} 0.6\%$ (p from 5 GeV to 100 GeV), $\sigma_{\rm IP} {<\,} 20~\mu m$
 - Vertexing: $\sigma_{\tau} \sim 45 \text{ fs}$ for $B_s \rightarrow J/\psi \varphi$
 - PID: 97% μ ID for 1-3% $\pi \rightarrow \mu$ misID
 - Dipole magnet polarity periodically flipped to change the sign of many reconstruction asymmetries

LHCb Events


- Information from all subdetectors combined to form candidate charged particles and neutral clusters for analysis
 - Event display: sample $\Lambda_b^0 \rightarrow J/\psi p K$ candidate event
- Large number of B decay modes can be constructed very cleanly
 - Backgrounds in analysis tend to be mostly combinatoric, mis-identified daughters, or partially reconstructed decays (right)

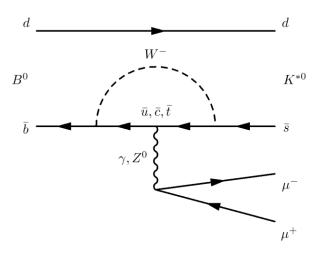

Data taking status

- •13 TeV, 25ns data coming in smoothly
 - Heavy flavor cross section scales linearly in √s: Run2 dataset surpasses Run1 already!

 LHCb data taking inefficiency dominated by deadtime imposed by 1 MHz readout

LHCb Efficiency breakdown in 2016

LHCb Integrated Recorded Luminosity in pp, 2010-2017


Rare Decays and Lepton Flavor Universality

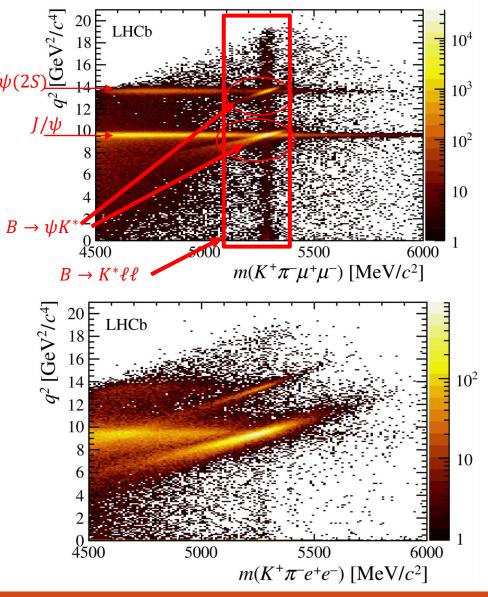
ARXIV:1705.05802

Electroweak Penguin Decays

- Penguin transitions stringently test the structure of the electroweak interaction
 - In SM: loop structure with almost all major SM players at once: *W*, *Z*, *γ*, *t*
 - New particles connected to EWSB can appear and introduce q² - or angular-dependent interference
 - $q^2 \equiv \left(p_{\ell^+} + p_{\ell^-}\right)^2$
- Excellent targets for both LHCb and B-factories
 - Dilepton in final state allows for clean event selection
 - Rich phenomenology with scalar and vector hadronic final states (K or K*)
 - SM calculations become unreliable near $m(\ell \ell) = m(J/\psi), m(\psi(2S))$
 - (tree-level $b \rightarrow c\bar{c}s$ amplitudes, $c\bar{c}$ vacuum polarization, long distance effects...)
 - Focus on $q^2 < 6 \text{ GeV}^2$ to avoid
 - Subdivided into $[0.045, 1.1] \; GeV^2$ and $[1.1, 6.0] \; GeV^2$
- Lepton universality test: general consensus in literature that if only SM fields participate

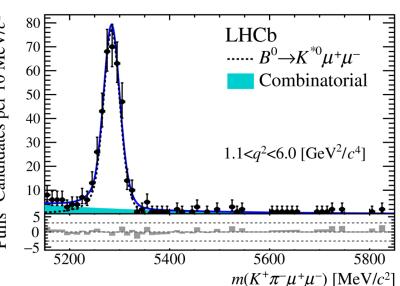
$$R_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} = 1 \pm \mathcal{O}(10^{-3})$$

RK* event selection and raw yields

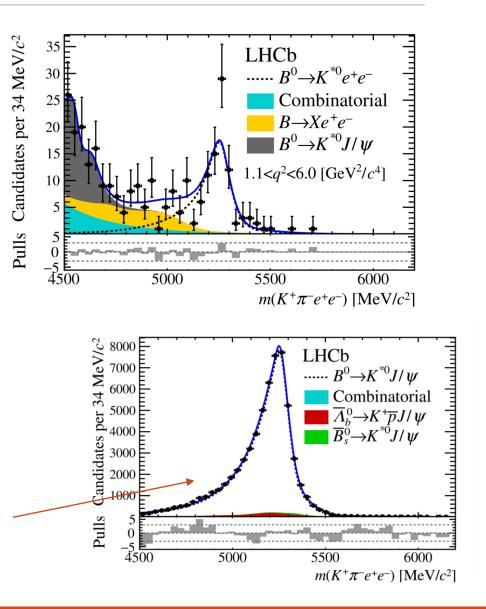

• Main challenge experimentally at LHCb: electron reconstruction

- Electron momentum resolution is considerably worsened by bremsstrahlung
 - Charged particles at LHCb see $X/X_0 \approx 60\%$ before RICH2, $\approx 30\%$ before magnet
 - Recovery algorithms find the hardest premagnet emissions ($E_T > 75 \text{ MeV}$)
 - Limitations of E_T threshold, unassociated clusters misidentified as brem. and inefficiency of isolation limit resolution
- Dielectron mass resolution also strongly dependent on trigger path

•Measure double ratio

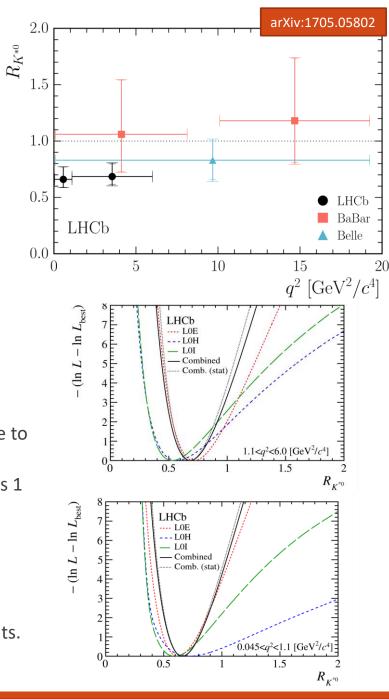

$$\frac{\mathcal{B}(B \to K^* \mu \mu)}{\mathcal{B}(B \to J/\psi[\to \mu \mu]K^*)} / \frac{\mathcal{B}(B \to K^* ee)}{\mathcal{B}(B \to J/\psi[\to ee]K^*)}$$
$$= \frac{\mathcal{B}(B \to K^* ee)}{\mathcal{B}(B \to K^* \mu \mu)} / r_{J/\psi}$$

to minimize impact of reconstruction systematics on LFU observables



R_{K^*}

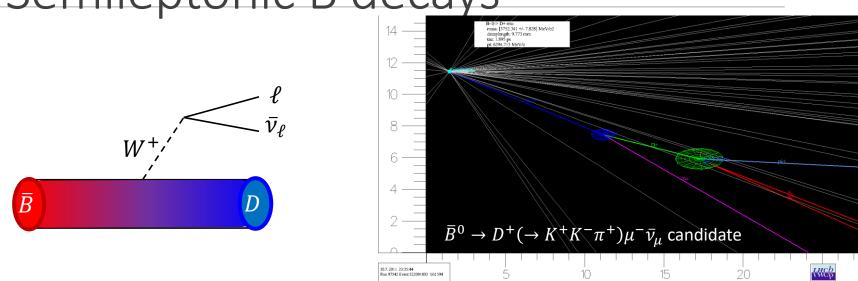
Candidates per 10 MeV/c² Pulls



- Mass shape in electron mode is sum of shapes corresponding to zero, one, or two or more recovered photons
 - Fit separately in each of [electron triggered, kaon triggered, other] categories
 - Parameters fixed in signal decays to those obtained in fit to $B \rightarrow J/\psi K^*$

RK* results

- This result:
 - $R_{K^*}(low q^2) = 0.66 + 0.011 \pm 0.03$
 - $2.1 2.3\sigma$ below predictions (~0.92)
 - $R_{K^*}(central q^2) = 0.69 + 0.01 \pm 0.05$
 - $2.4-2.5\sigma$ below predictions (~1.0)
- Previous LHCb result:
 - $R_{K, q^2 < 6 \text{GeV}^2} = 0.745^{+0.090}_{-0.074} \pm 0.036$
- Result cross-checked by studying the single ratio $r_{J/\psi} = \frac{\mathcal{B}(B \rightarrow J/\psi[\rightarrow \mu\mu]K^*)}{\mathcal{B}(B \rightarrow J/\psi[\rightarrow ee]K^*)} = 1.043 \pm 0.006 \pm 0.045$
 - Fewer cancellations than double ratio means it is more sensitive to systematic issues with efficiencies and yield extraction
 - Further cross-checks measure double ratio for $\psi(2S) \rightarrow$ result is 1 within 2%(=stat error)
- Consistent with $C_9/C_9 C_{10}$ -type new physics picture preferred by global fits to $b \rightarrow s\ell\ell$ data eg
- Currently this is the "poster child" of statistics-limited measurements. Expect fast improvement with Run2!



LFU in Semileptonic Decays

PRL 115, 11803 (2015)

LHCB-PAPER-2017-017 (IN PREPARATION)

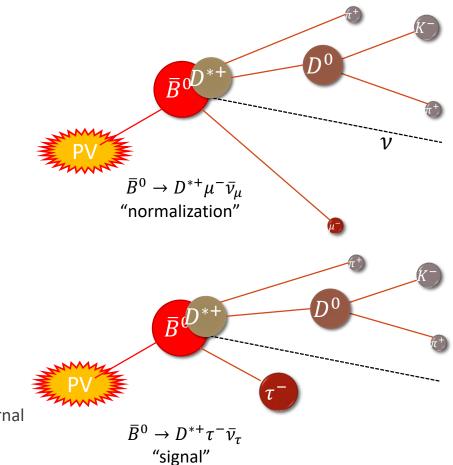
Semileptonic B decays

• "Beta decay" of B hadrons – signature is lepton (μ or e (or τ !)), recoiling hadronic system, and missing momentum

- Theoretically well-understood in the SM
 - Tree level virtual W emission strong V-A structure
 - No QCD interaction between the lepton-neutrino system and the recoiling hadron(s)
 - o $\overline{B} \rightarrow W^{*\pm}D^{(*)}$ half of the decay still needs non-perturbative input
- •Charged lepton universality implies branching fractions for semileptonic decays to e, μ, τ differ only phase space and helicity-suppressed contributions

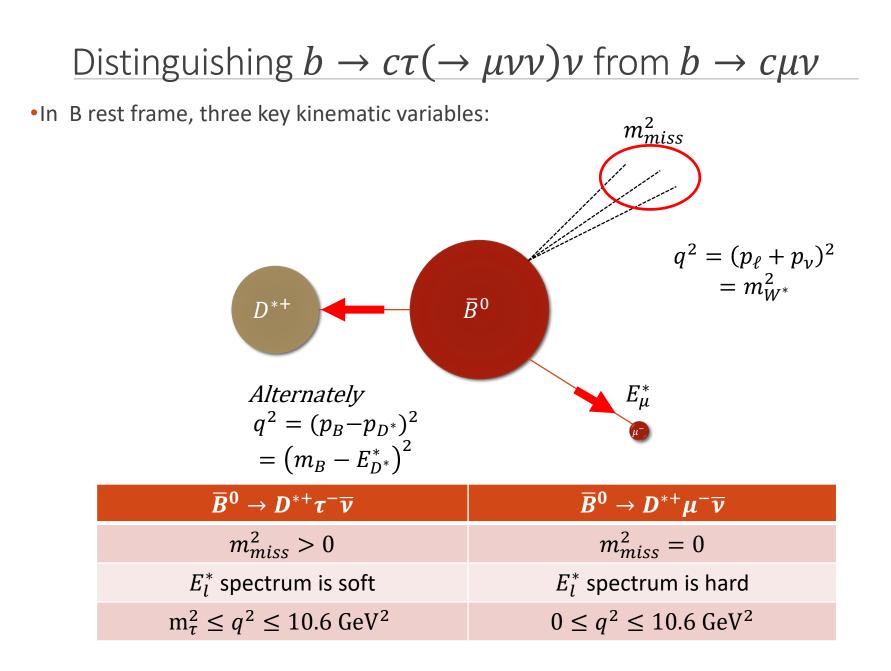
What we want to measure

$$R(D^{*+}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\ell})}$$

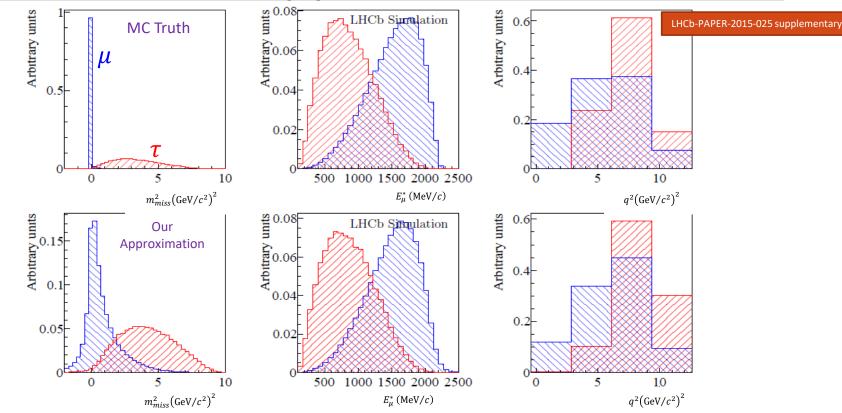

- Theoretically clean due to cancellation of form factor uncertainties
 - Poorly-measured helicity suppressed amplitudes give dominant uncertainty
 - SM (HQET): $R(D^*) = 0.252(3)$ [PRD **85** 094025 (2012)]

 $\circ \tau^- \to \mu^- \bar{\nu}_\ell \nu_\tau$

- Automatic normalization from identical final state
- Must be disentangled from $\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\mu}$ using decay kinematics


 $\circ \tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_\tau$

- Clear signature: higher signal purity
- Must be normalized to hadronic B decays (reliant on external measurements to get R(D*)
- Common Challenges: missing neutrinos with (mostly) unconstrained momentum
 - Don't have full B momentum
 - Large backgrounds from partially-reconstructed B decays

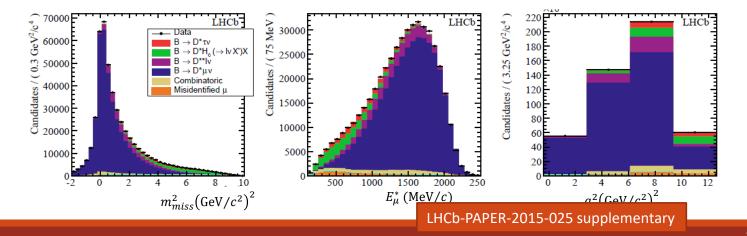


Measurement Using $\tau \rightarrow \mu \bar{\nu} \nu$

PRL 115, 11803 (2015)

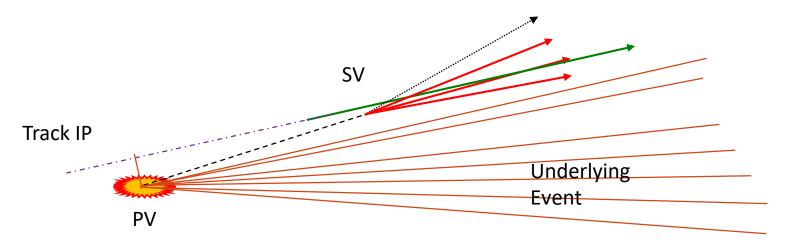
Rest frame approximation

• CHALLENGE: not enough constraints to close the kinematics at LHCb


• Key: Distributions are broad to begin with – a well-behaved approximation will still preserve differences between signal, normalization and backgrounds

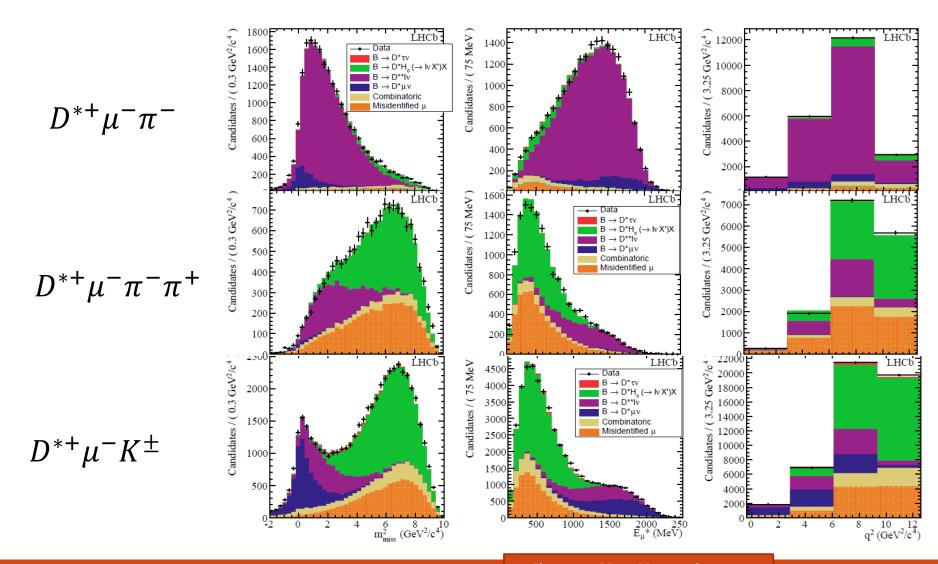
Take
$$(\gamma \beta_Z)_{\overline{B}} = (\gamma \beta_Z)_{D^* \mu}$$

 $\Rightarrow (p_Z)_{\overline{B}} = \frac{m_B}{m(D^* \mu)} (p_Z)_{D^* \mu}$


Fit

•Using rest frame approximation, construct 3D "template" histograms for each process contributing to $D^{*+}\mu^{-}$

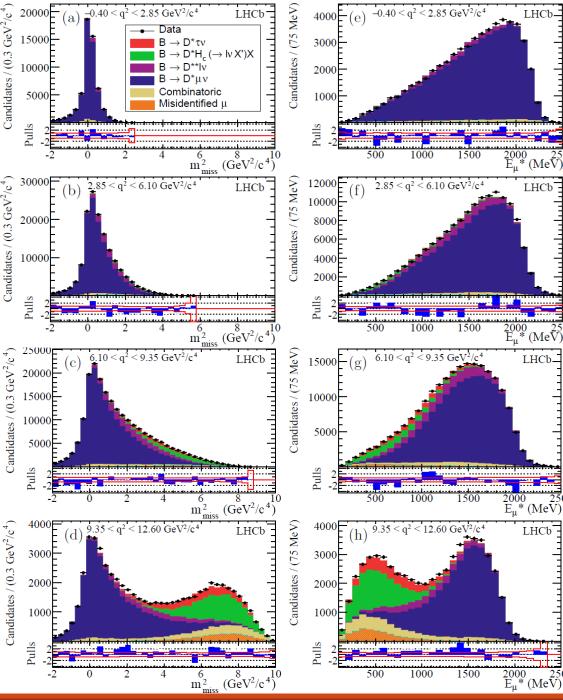
- Signal, normalization, and partially reconstructed backgrounds use simulated events, other backgrounds use control data
- Templates are functions of any relevant model parameters via interpolation between histograms generated with different fixed values of those parameters
- •These templates are then used as PDFs for a maximum likelihood fit to data
- -> distributions shown previously directly translate to one-dimensional projections of the 3D templates for signal and normalization


Reducing partially reconstructed backgrounds

• Make use of superb tracking system

- Scan over every reconstructed track and compare against $D^{*+}\mu^-$ vertex
 - Check for vertex quality with PV and SV, change in displacement of SV, p_T , alignment of track and $D^{*+}\mu^-$ momenta
- Each track receives BDT score as "SV-like" (high) vs "PV-like" (low)
 - Cut on most SV-like track below threshold: get signal sample enriched in exclusive decays. Rejects 70% of events with 1 additional slow pion
 - Cut on most SV-like track(s) being above threshold: get control samples enriched in interesting backgrounds $B \rightarrow D^{*+}\pi\mu\nu$, $B \rightarrow D^{*+}\pi\pi\mu\nu$, $B \rightarrow D^{*+}H_c(\rightarrow\mu\nu X')X$ (see backups for projections)

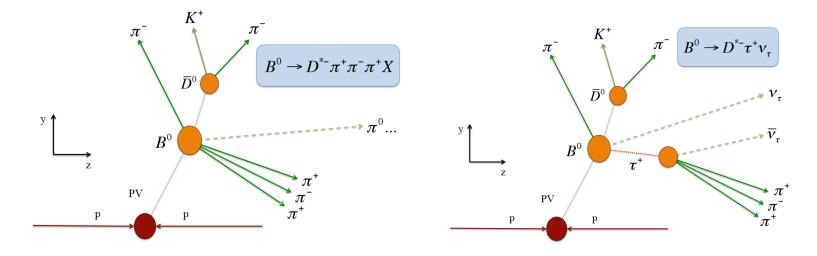
Control sample fits for BG shapes



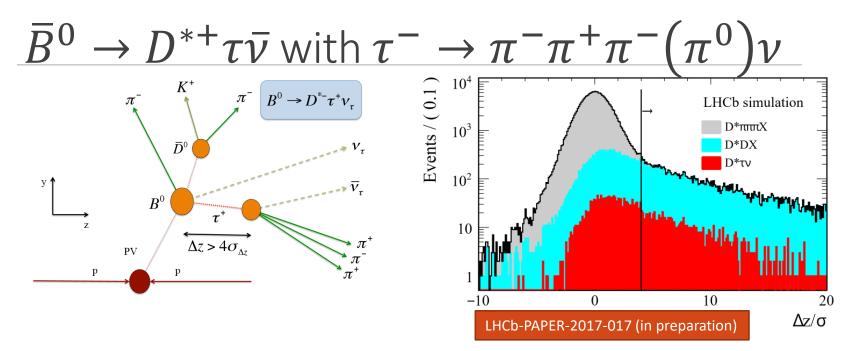
Detailed fit projections

- Projections of (left) m^2_{miss} and (right) E^*_{μ} in bins of increasing q^2 from top to bottom
- Signal more clearly visible here in highest q^2 bin
 - Note different y scales, most signal actually in second-highest q² bin
- Final result:

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$


- Systematics dominated by MC statistics, treatment of hadron -> muon misID background
 - Other systematics smaller and driven by control sample size – lots of room for improvement!

Measurement Using $\tau \rightarrow 3\pi(\pi^0)\nu$


LHCB-PAPER-2017-017 (IN PREPARATION)

 $\rightarrow D^{*+}\tau\bar{\nu}$ with $\tau^- \rightarrow \pi^-\pi^+\pi^-(\pi^0)\nu$

• $\overline{B}{}^0 \to D^{*+}\tau^-(\to \pi^-\pi^+\pi^-(\pi^0)\nu)\overline{\nu}$ reconstructed using both candidates from the $D^0 \to K^-\pi^+$ trigger and the 2,3,4-body topological triggers

- In this case, the combination of the two paths has the most flat q^2 efficiency
- •Normalize result using number of reconstructed $\overline{B}{}^0 \rightarrow D^{*+}\pi^-\pi^+\pi^-$ exclusive hadronic decays (left cartoon)

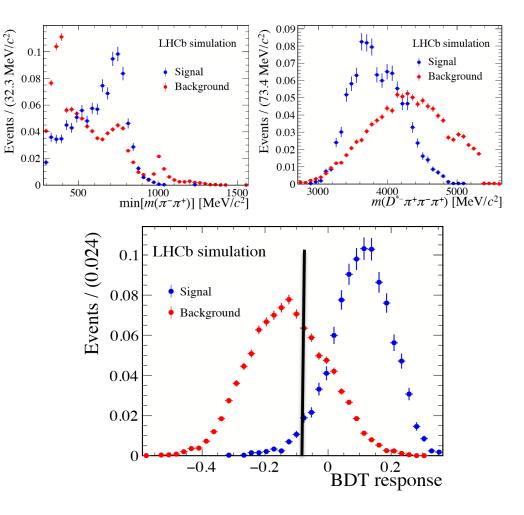
•This signal mode is historically very challenging due to the large inclusive $\overline{B} \rightarrow D^{*+} 3\pi_{direct} X$ branching fraction (includes normalization mode)

- Size is 100x expected signal
- •Very large boost and excellent vertexing at LHCb comes to the rescue:
 - Requiring 4σ separation of vertices along \hat{z} removes 99.9% of non-flying background
 - Signal efficiency is ~34%
 - remember, exponential distribution is largest near zero no free lunches!
 - Result is O(11%) signal purity, compared to 4.4% in muonic mode
 - Further enhance the signal: require no tracks with $< 5\sigma$ IP significance to B vertex

Reconstruction of Fit Variables

•Reconstructed variables used for 3-dimensional fit to q^2 , τ decay time, BDT

- •This measurement again hits the difficulty of underconstrained kinematics with missing neutrinos
 - Know: $p_{3\pi}$, p_{D^*} , B flight vector from PV, 3π flight vector from D^*
 - Using known B and τ mass to solve results in 2 × 2-fold quadratic ambiguities better than previous situation, but still not complete!

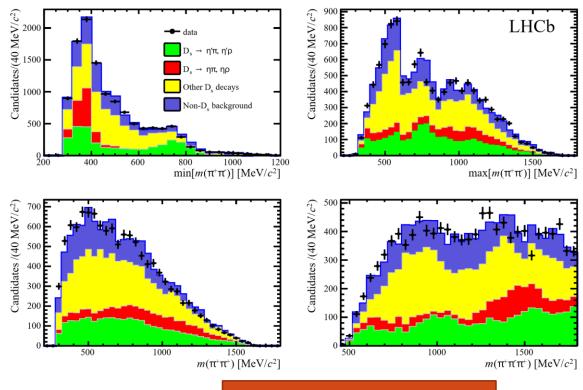

$$\begin{aligned} |\vec{p}_{B^0}| &= \frac{(m_{D^*\tau}^2 + m_{B^0}^2)|\vec{p}_{D^*\tau}|\cos\theta_{B^0,D^*\tau} \pm E_{D^*\tau}\sqrt{(m_{B^0}^2 - m_{D^*\tau}^2)^2 - 4m_{B^0}^2|\vec{p}_{D^*\tau}|^2\sin^2\theta_{B^0}}}{2(E_{D^*\tau}^2 - |\vec{p}_{D^*\tau}|^2\cos^2\theta_{B^0,D^*\tau})}\\ |\vec{p}_{\tau}| &= \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta_{\tau,3\pi} \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta_{\tau,3\pi}}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta_{\tau,3\pi})}\end{aligned}$$

•Choose θ, θ' such that the ambiguity vanishes

- Provides $\approx 10\%$ resolution on q^2
- 2nd reconstruction hypothesis: assume no neutinos at B vertex, unknown mass neutral system at 3pi vertex – obtain estimate for mass m(3pi+N) which peaks for Ds bkgnd

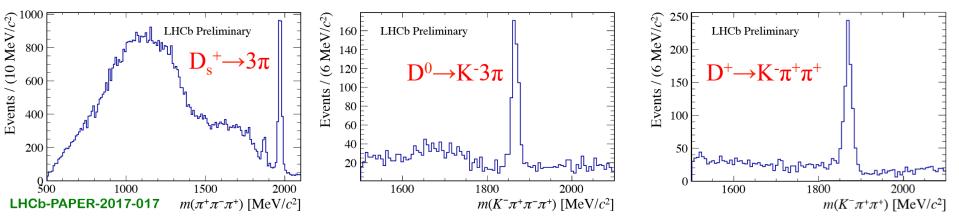
Signal BDT

- •Train a dedicated BDT to distinguish signal from $\overline{B} \rightarrow D^{*+}D_s X$ background
 - Distinguishing variables:
 - Charged and neutral energy inside an η, ϕ cone
 - Masses and momenta under both reconstruction hypotheses
 - $m_{\pi^+\pi^-}^{\max}, m_{\pi^+\pi^-}^{\min}$
 - Transverse energy and flight distance of 3pi
 - $m_{D^*3\pi}$
- •Training is on MC samples
- •Very important to use best possible info on $m_{\pi^+\pi^-}^{\max}$, $m_{\pi^+\pi^-}^{\min}$ and $m_{D^*3\pi}$ for this to work
 - Control samples are key!



LHCb-PAPER-2017-017 (in preparation)

Controlling Ds backgrounds

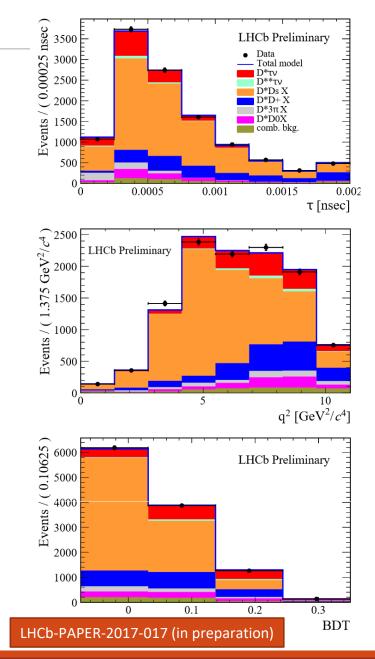

- •Use of the 3pi dynamics in the BDT requires that the simulation modelling in D_s decays to 3π +neutrals be as good as possible
 - Most of the mismatch between data and simulation for these is due to incorrect relative branching ratios in MC

•Use BDT to select the most $\overline{B} \rightarrow D^{*+}D_sX$ -like region and perform a fit to calibrate these relative contributions directly from the data

LHCb-PAPER-2017-017 (in preparation)

Calibrating Simulation

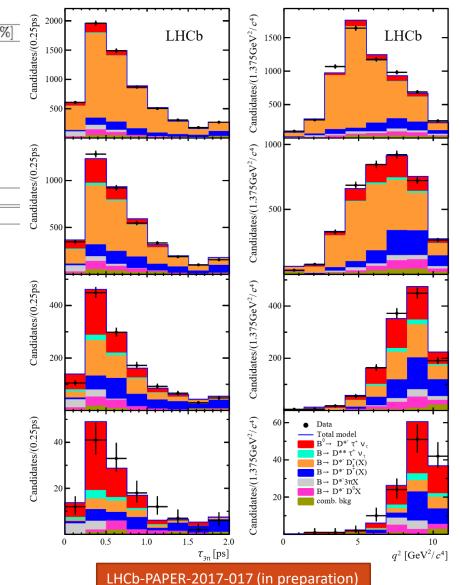
- •q² distributions for each of the double charm background classes are validated and corrected in subsets of the data with fully reconstructed D mesons
 - $D_s \rightarrow m_{3\pi}$ above kinematic window for au decay
 - $D^0 \rightarrow$ invert isolation requirements to find $D^0 \rightarrow K^- 3\pi$ decays
 - $D^+ \rightarrow$ invert PID requirements on minority-sign pion

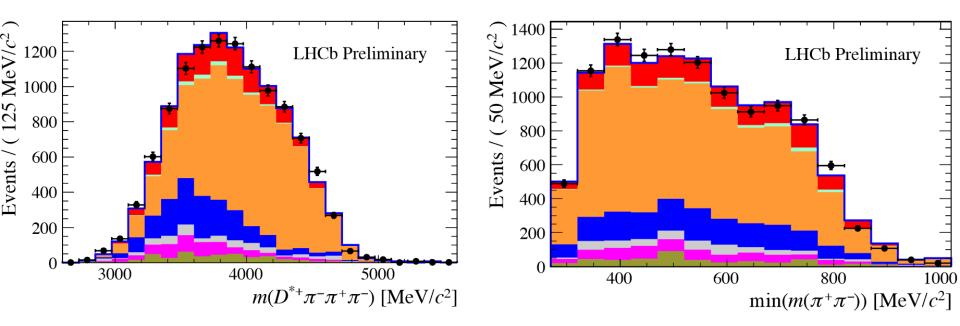

Fit

- •3-dimensional template fit (including all correlations) to BDT output, q^2 and estimated tau decay time
- •Templates taken entirely from simulated data with corrections from control regions

•Free components: $\tau \rightarrow 3\pi\nu$ signal+ $\tau \rightarrow 3\pi\pi^{0}\nu$ signal (in fixed ratio) $X_{b} \rightarrow D^{**}\tau\nu$ (fixed ratio to signal) $B \rightarrow D^{*(*)}D_{s}X$ (subcomponents constrained by fit to $D_{s} \rightarrow 3\pi$ exclusive region) $B \rightarrow D^{*+}D^{-}X$ $B \rightarrow D^{*+}D^{0}X$ $B \rightarrow D^{*+}3\pi$ residual Combinatorial background

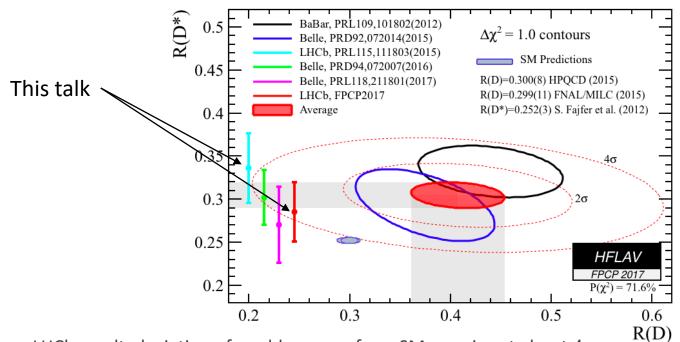
•Result: $0.285 \pm 0.019 \pm 0.025 \pm 0.013$


Splits the difference between SM and previous LHCb


Systematic Uncertainties and Detailed Projections

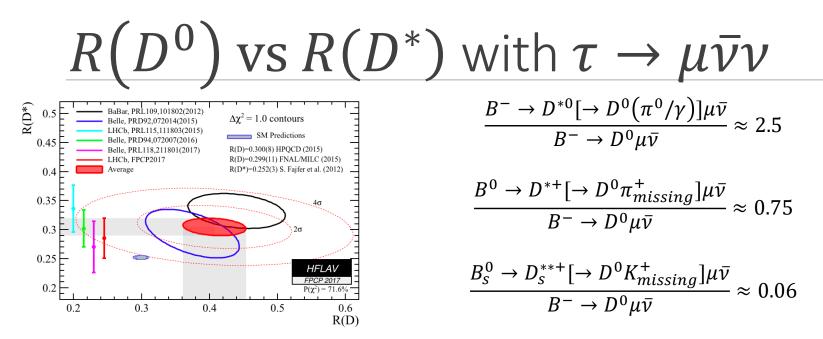
Source	$\delta R(D^{*-})/R(D^{*-})$ [%
Simulated sample size	4.7
Signal decay model	1.8
$D^{**}\tau\nu$ and $D^{**}_s\tau\nu$ feeddowns	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D_s^+X, B \to D^{*-}D^+X, B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^* 3\pi X$ background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Total internal uncertainty	8.9
$\mathcal{B}(B^0 \to D^* 3\pi)$ and $\mathcal{B}(B^0 \to D^* \mu \nu_{\mu})$	4.8

- Largest individual internal systematic is the size of the simulated templates
 - Already lots of CPU time used work underway trying to find effective fast simulation for template fits
- Knowledge of the shape and 3pi dynamics for the various D decays will be key to driving down future uncertainty
 - Control samples will grow with data and help, but external input will be needed to reach ultimate sensitivity (perhaps with help of BESIII?)
- Normalization uncertainty still quite large despite recent BaBar measurement. More input needed here!



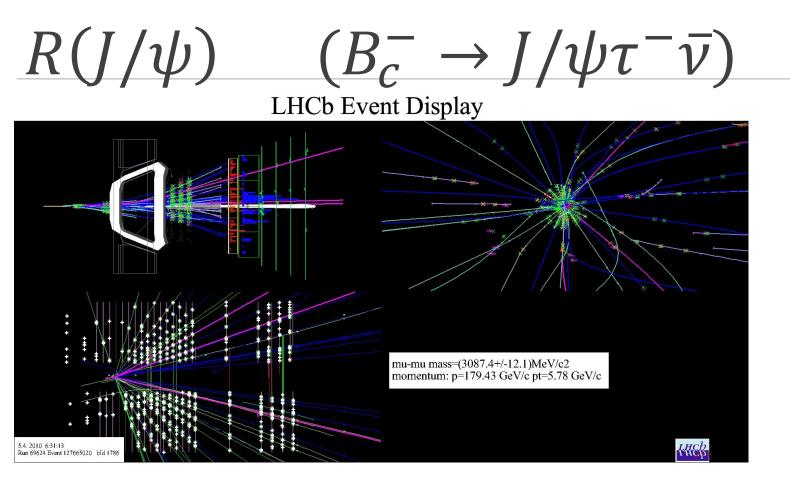
Post-fit BDT inputs

- •Important sanity check: good fit to BDT output distribution at the correct minimum should imply good agreement in BDT *input* distributions.
- •As before, most important are those sensitive to problems with the MC decay model, the 3pi mass and the variables encoding the 3pi dynamics
 - Quality of agreement very acceptable



• With new LHCb result, deviation of world average from SM remains at about 4σ

- Central value reduced very slightly, error bars shrunk by same familiar story to those who follow, e.g., $|V_{ub}|$ inclusive vs exclusive
- To-Dos:
 - (community) improve R(D*) predictions (go beyond CLN?)
 - (LHCb) need results in baryons (different systematics, can begin to think about spin structure in plausible NP models)
 - (LHCb+Belle-II) better measurements in the R(D) channel (comparable precision here would drive us over 5 sigma at the current central value)


Followup Measurements

WHAT MORE CAN WE LEARN FROM RUN1

• Muonic $\overline{B}{}^0 \rightarrow D^{*+} \tau^- \overline{\nu}$ served as a prototype due to simpler measurement structure, better handles on certain backgrounds

- $B^- \rightarrow D^0 \tau^- \bar{\nu}$ perfectly possible at LHCb
 - Strategy: simultaneous fit to disjoint $D^0\mu^-$ and $D^{*+}\mu^-$ samples
 - Feed-down from D* always present in $D^0\mu^-$ sample \rightarrow correlation in R(D) vs R(D*).
 - Simultaneously refitting $D^{*+}\mu^-$ sample helps control this
 - Low slow pion efficiency means $D^0\mu^-$ sample is 5x larger
 - 75% is D* feed down \rightarrow expect big improvement along that direction
- • $R(D^+)$ not feasible with Run1 dataset
 - Piggybacking on exclusive charm trigger only works for $D^0 \rightarrow h^+h^-$ selection
 - Run 2 adds dedicated triggers for $D^0\mu X$ these final states as well as $D^+\mu X$, $\Lambda_c^+\mu X$, $D_s^+\mu X$

•Production rate is very low, but trimuon final state is difficult to miss \rightarrow huge reconstruction efficiency boost compared to $D^{*+}\mu$ final state

• O(10⁴) normalization events in Run1 dataset

•Main challenge is that $B \rightarrow J/\psi hX$ with h misidentified as μ is bigger than signal

• 10^{-3} misID rate compensated by 100x bigger cross-section

"Hadronic tau" program

•Statistical uncertainty on $K_{had}(D^{*+}) = \frac{\mathcal{B}(D^{*+}\tau\nu)}{\mathcal{B}(D^{*+}\pi\pi\pi)}$ is expected to come down by

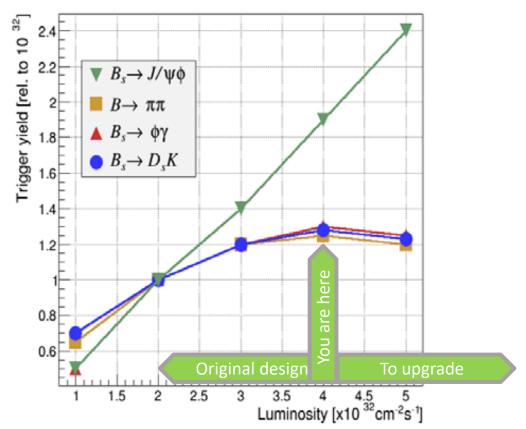
a factor of two using the Run1+Run2 dataset

- Recall internal systematic uncertainties are also mostly scaling with control sample size (=luminosity)
- Work is already underway to adapt the present analysis to exploit the Run2 data with a combined analysis
- •Along with more data, this analysis will also benefit greatly from the full alignment of offline and online reconstruction achieved in Run2
 - Trigger effects under much better control means smaller corrections with smaller uncertainties

•As in the muonic tau decay case, this analysis as a 'proof-of-concept' has launched a whole program across all accessible b hadron flavors

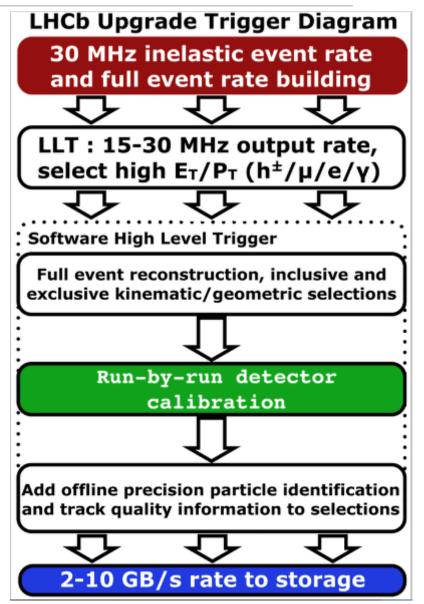
LHCb Upgrade

Beyond Run 2


2015 2016 2017 2018 2019 2020 3	2021
JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMA	M A S O N D

Shutdown/Technical stop Protons physics Commissioning Ions

- •LHC will continue to operate through the next decade and more
- •LHCb is on target to exceed 5/fb
 - After 5/fb and a two year break, its no longer clearly beneficial to keep integrating ~ 1.5/fb per year
 - Progress two incremental
 - Belle-II data-taking set to begin in earnest
 - Goal: increase dataset by an order of magnitude over next phase of running


Challenges at high luminosity

- 26 kHz of beauty in acceptnace (10 MHz of charm!) with 5-7 interactions per crossing
 - Hardware must be able to be read out much faster than 1 MHz
 - Readout of all subdetectors must be replaced
 - Occupancy will go up dramatically
 - All-new tracking system required
 - Cannot rely on hardware E_T thresholds and expect to make intelligent trigger decisions
 - See right: channels with no background-free selection (i.e. not charmonium signals) have already tapered off as thresholds have gone up
 - Need to do something new in the trigger!

Upgrade Trigger

- •Hardware trigger will be completely removed, all subsystems read out at 40 MHz LHC clock and passed to all-software trigger
 - Software LLT allows option to throttle event rate
 - Initial HLT reconstruction to reduce below 1-2 MHz
 - Track fit, PID, selection applied to reduce to 20-100 kHz
- •Run-by-run detector calibration and offlinequality reconstruction online already built and proven possible in Run2
 - Major milestone towards the next generation of flavor physics data-taking!

Flavor physics with 50/fb

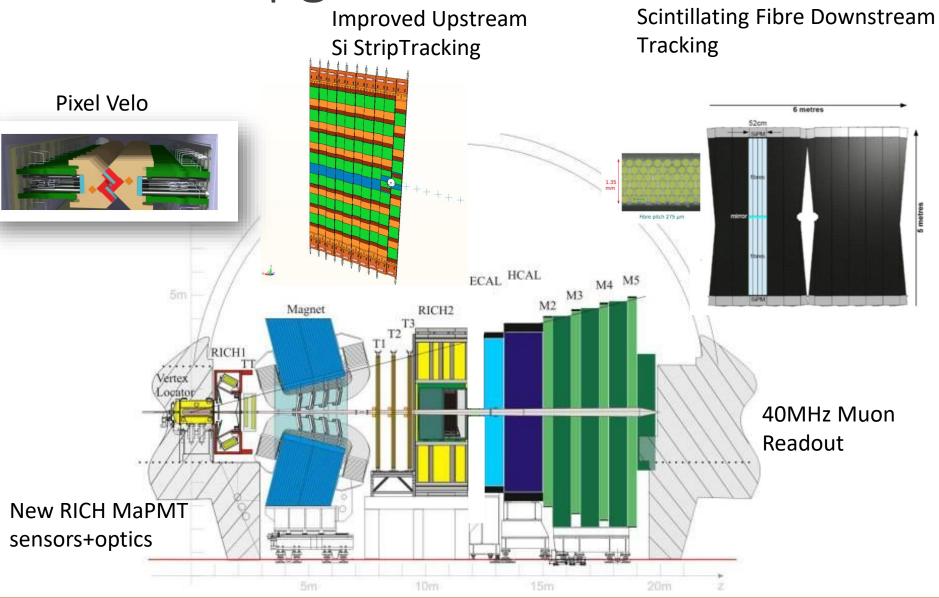
Туре	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{ m fb}^{-1})$	uncertainty
B_s^0 mixing	$2eta_s\;(B^0_s o J\!/\psi\;\phi)$	0.10 [30]	0.025	0.008	~ 0.003
	$2eta_s \; (B^0_s ightarrow J\!/\!\psi \; f_0(980))$	0.17 [32]	0.045	0.014	~ 0.01
	$a_{ m sl}^s$	6.4×10^{-3} [63]	0.6×10^{-3}	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2eta^{ m eff}_s(B^0_s o \phi\phi)$	-	0.17	0.03	0.02
penguins	$2eta^{ ext{eff}}_s(B^0_s o K^{*0}ar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2eta^{ m eff}(B^0 o \phi K^0_S)$	0.17 [63]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 o \phi \gamma)$	-	0.09	0.02	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi\gamma)/ au_{B^0_*}$	-	5 %	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [64]	0.025	0.008	0.02
penguins	$s_0A_{ m FB}(B^0 o K^{st 0}\mu^+\mu^-)$	25% [64]	6%	2%	7 %
	$A_{ m I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.25 [9]	0.08	0.025	~ 0.02
	${\cal B}(B^+ o \pi^+ \mu^+ \mu^-)/{\cal B}(B^+ o K^+ \mu^+ \mu^-)$	25 % [29]	8 %	2.5%	$\sim 10 \%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [4]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguins	${\cal B}(B^0 o \mu^+\mu^-)/{\cal B}(B^0_s o \mu^+\mu^-)$	-	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B ightarrow D^{(*)} K^{(*)})$	$\sim 10-12^{\circ}$ [40, 41]	4°	0.9°	negligible
triangle	$\gamma \; (B^0_s o D_s K)$	-	11°	2.0°	negligible
angles	$eta \ (B^0 o J/\psi K^0_S)$	0.8° [63]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [63]	0.40×10^{-3}	0.07×10^{-3}	_
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} [8]	0.65×10^{-3}	0.12×10^{-3}	-

•With 50/fb in hand, many CKM and CP violating observables will be pushed up to or beyond their respective theory uncertainty, providing powerful constraints on new physics

Beyond the (phase1) upgrade

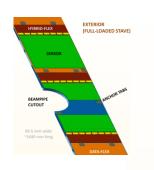
- Possiblities being explored for supplemental upgrades on a longer timescale than LS2
 - TOF PID system using BaBar DIRC bars
 - "side chambers" in magnet to provide extra hits on low-momentum tracks bent out of acceptance

•Already studies underway to plot the way forward to a post-LHCb Upgrade which will collect 300/fb



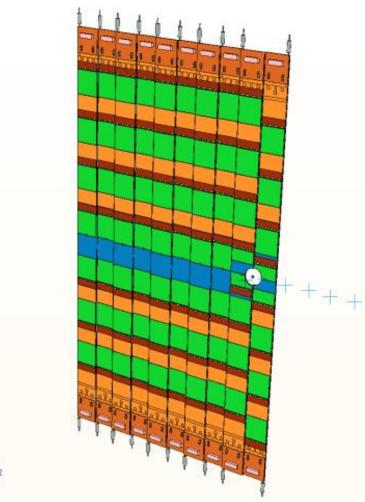
Summary

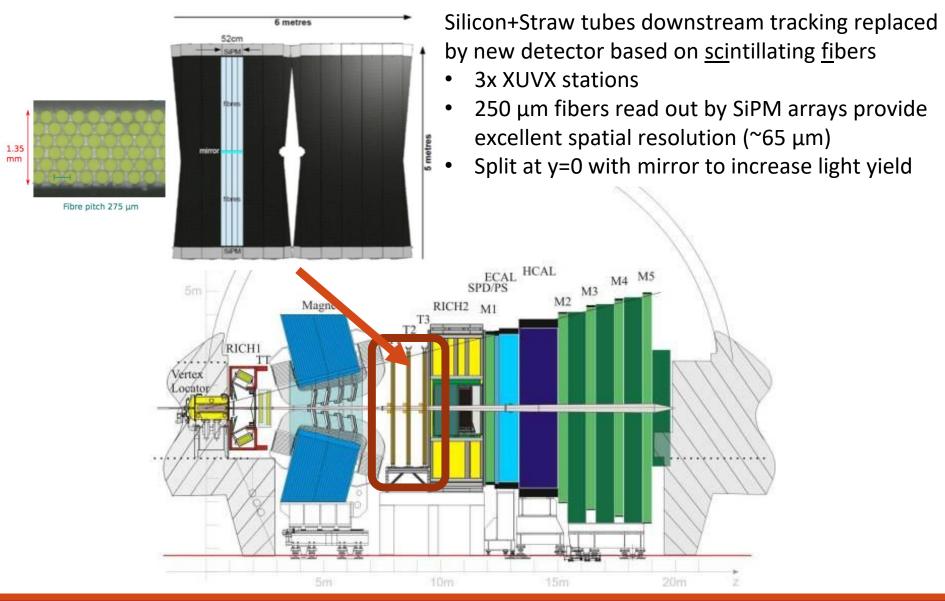
- B physics experiments are pushing lepton universality tests into new and exciting territories beyond tests of the electroweak interaction, with LHCb playing a key role
- Measurements of LFU in electroweak penguin decays are reaching the 10% precision level with LHCb Run1
 - Consistent but inconclusive results favoring lower muon (higher electron) branching fractions fit in with consistently low $b \rightarrow s\mu\mu$ branching fractions from other analyses
 - No smoking gun yet! We've seen large deviations disappear in a puff of statistics before!
 - Large improvements expected with LHCb Run2 dataset
 - (Run2 L0 trigger configuration optimized with an eye towards not limiting $B \rightarrow K^{(*)}ee$ measurements no worries about lower bandwidth with larger x-sections)
- LHCb has launched a program of studying semileptonic $b \rightarrow X \tau \nu$ decays (initially dismissed as too hard to do in pp collisions)
 - "Prototype" measurements completed in both $\tau \rightarrow \mu\nu\nu$ and $\tau \rightarrow \pi\pi\pi\nu$ sub-modes
 - Lots of "to-do"s to extend the program, but limited by manpower and long lead times required for these systematics-sensitive analyses (template fits are tricky!)
- After a very successful Run1, LHCb is smoothly integrating 13 TeV data
 - Faster rates to storage, higher cross-sections, offline-quality trigger reconstruction all promise to make this data extremely powerful for physics
- LHCb upgrade will allow continued progress on flavor observables at the current pace post-2020
 - Ideas already in the pipeline for late-2020's possibilities


Backup

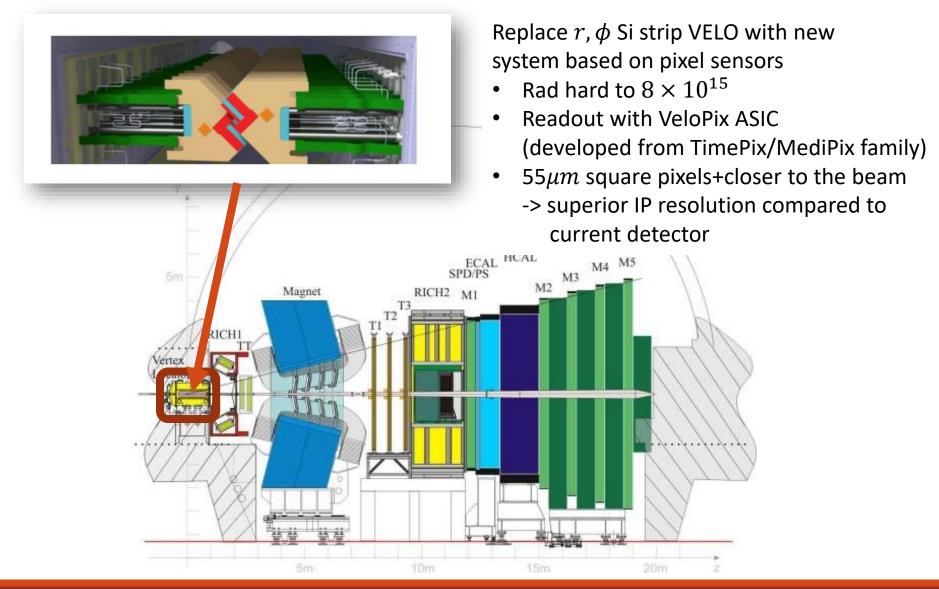
LHCb Upgrade Hardware

LHCb Upgrade - UT

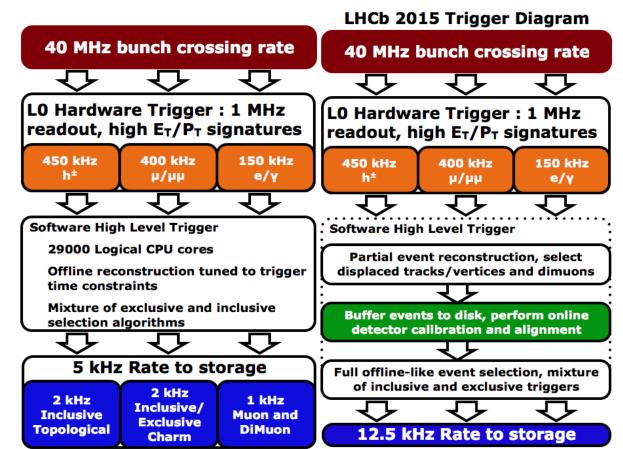


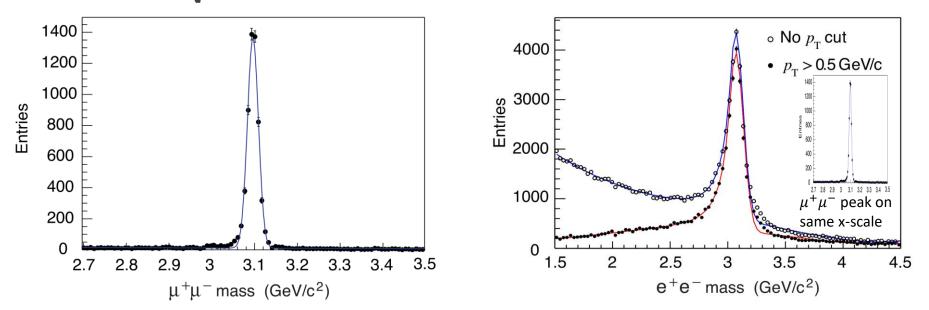

TT to be replaced with UT (Upstream Tracker)

- Collaboration between US institutions (inc. UMD) and INFN, Zurich, AGH and CERN
- 4 planes of Si-strip detectors located ~2m from interaction point replacing current TT
 - Features improved segmentation, full fiducial coverage of every layer
 - FE electronics on ASIC at sensor allows for zero-suppressed 40 MHz readout

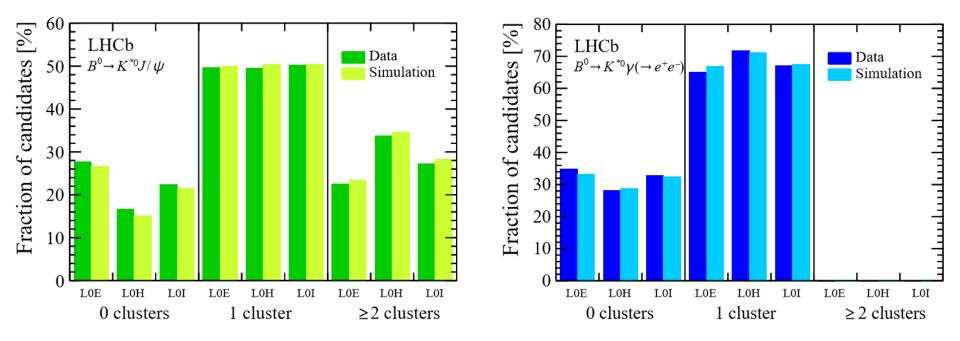

Will allow for fast reconstruction of track segments before extrapolating to downstream trackers, improving HLT tracking speed by a factor of 3

LHCb Upgrade - SciFi


LHCb Upgrade - VELOPIX

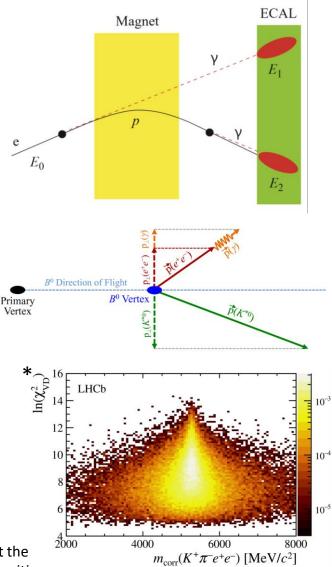

Triggering on Heavy Flavor

- Triggering inclusively as possible is *essential* in order to not limit the physics program
- Software high-level trigger performs full event reconstruction for all tracks above 300 MeV of p_T
 - First level searches for single high-impact parameter tracks with > 1.6 GeV of p_T
 - Mix of inclusive n-body displaced vertex and exclusive selections to arrive at trigger decision
 - Exclusive high-pt charm triggering for charm physics and access to alternate sample of b to c decays

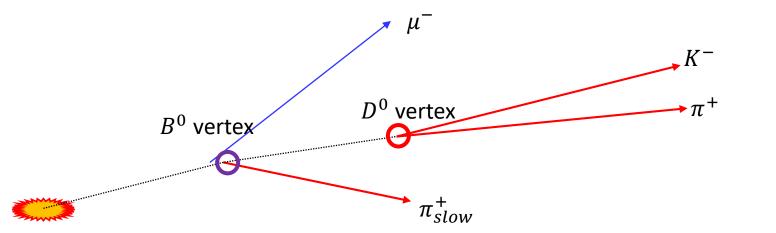

•New in Run2: aggressive buffering of first-stage software trigger to provide offline-quality calibration and alignment in the trigger

$e vs \mu$ reconstruction

K^{*}*ee* reconstruction paths

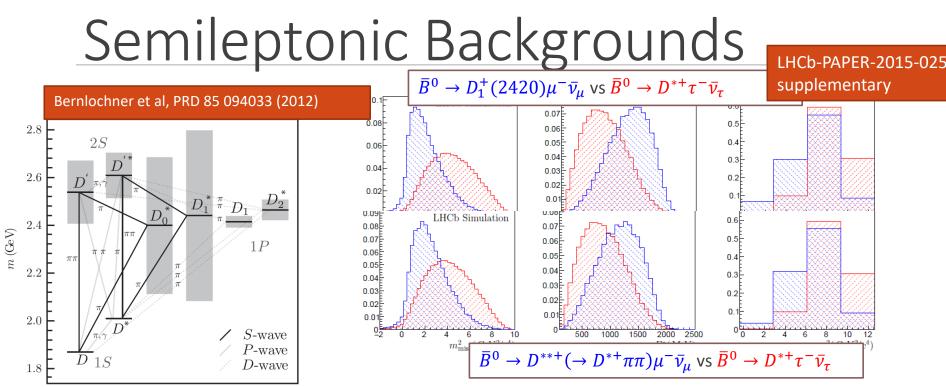

Low q2 = low opening angle means that separate clusters are not resolved

arXiv:1705.05802


Electron mode tools

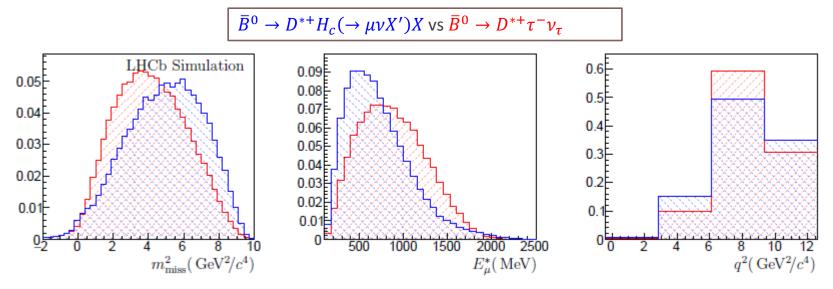
- Hard bremsstrahlung (top) can be corrected by explicitly searching for the calorimeter deposits from the emitted γ (E1 in left figure)
 - LHCb reconstruction searches for such deposits isolated from tracks with ET above threshold
 - Late emissions (E2) are typically merged with the electron shower and are used for e/hadron separation (E/p)
 - Remember, p measured by curvature, so p~p_final+E2
- Energy threshold and isolation requirement means not all large-angle bremsstrahlung is recovered
 - Can build a corrected mass to further distinguish backgrounds
 - Add p_{γ} (middle) to reconstructed B where $p_{\gamma_{\perp}} = p_{K^*\perp} p_{e^+e^-\perp}$, recompute B mass
 - Resulting resolution vs candidate separation from PV shown bottom right (note the log scale)

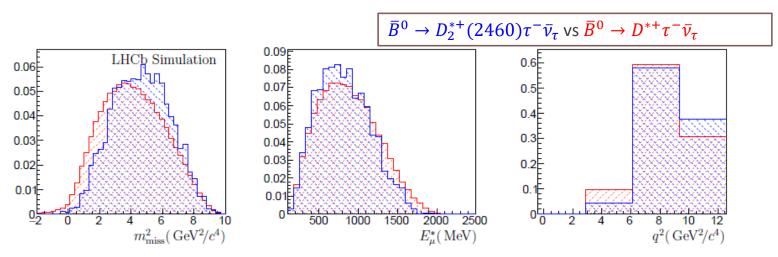
* χ^2_{VD} = delta chi2 for the hypothesis that the candidate vertex is at the PV vs nominal position



Muonic RD* Event Selection

•Combine $D^0 \to K^- \pi^+$ candidate passing charm trigger with μ^- and π^+_{slow} (inclusive displaced vertex triggers biased in missing mass)

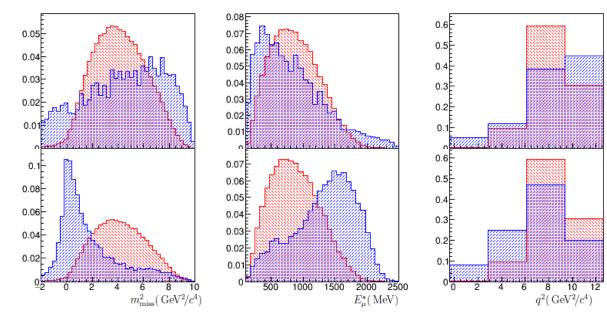

- Require $D^0 \rightarrow K^- \pi^+$ decay vertex well-separated from PV
- Require μ^- , $K^-\pi^+$ all to have significant impact parameter with respect to PV
- Remove prompt charm background with impact parameter requirements on $D^0 \to K^- \pi^+$


- •Contributions of excited charm states in the $B^{\pm,0} \rightarrow (c\bar{q})\mu\nu$ transition are large
 - We directly fit for contributions of 1P states constrained and unconstrained
 - Excellent consistency of resulting R(D*) with and without external measurements as input
 - $D^{*+}\mu^{-}\pi^{-}$ control sample sets nonperturbative shape parameters for input to signal fit ~ 1.8% relative systematic
 - States decaying as $D^*\pi\pi$ less well-understood, fit insensitive to exact composition.
 - $D^{*+}\mu^{-}\pi^{+}\pi^{-}$ control sample used to correct q^2 spectrum to match data ~ 1.2% relative systematic
- Distinguishable by "edge" at missing mass $pprox (2)m_{\pi}$
- •Use mu component plus reasonable guess (with large error bars) on R(D**) to constraint tau component (only adds 1.5% relative systematic)

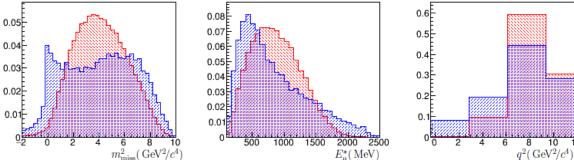
$B \rightarrow D^{*+}H_c(\rightarrow \mu \nu X')X$ background

- $b \rightarrow c\bar{c}q$ decays can lead to very similar shapes to the semitauonic decay (e.g. $\bar{B}^0 \rightarrow D^{*+}D_s^-(\rightarrow \phi\mu\nu)$ +many others)
- Branching fractions well-cataloged, but detailed descriptions of the $D^*DK(n \ge 0 \pi)$ final states are not simulated using full Dalitz plot description
 - Dedicated $D^{*+}\mu^{-}K^{\pm}$ control sample used to improve the template to match data
 - (1.5% relative systematic)
- Nastiest background unconstrained in fit (major contributor to statistical uncertainty)

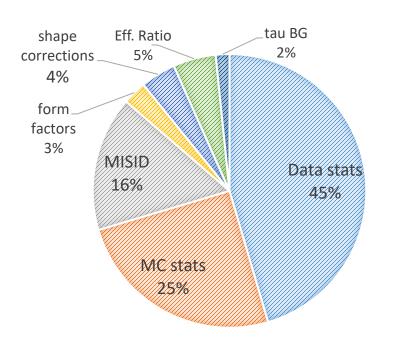
Tau backgrounds



•All backgrounds with real $\tau \rightarrow \mu \bar{\nu} \nu$ decays are an order of magnitude (at least) smaller than the signal

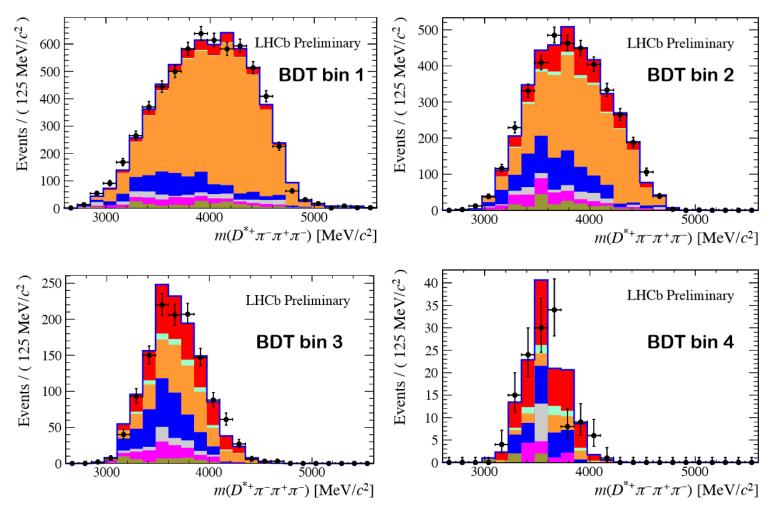

- Background contributions from $\overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau}$ are considered to be fixed relative to the corresponding decay modes to muons
 - Very small component, varying this contribution by 50% only moves R(D*) by 0.005
- Similarly, $\overline{B} \to D^{*+}D_s^-(\to \tau^-\nu)X$ are fixed to a known fraction of the $\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ background
 - Again, these have a negligible effect on R(D*)

Other backgrounds


- •Other backgrounds from "junk" reconstructed as $D^{*+}\mu^{-}$
 - combinatorial (top), fake D*+ candidates (middle), hadrons misidentified as muons (bottom), all derived from control samples

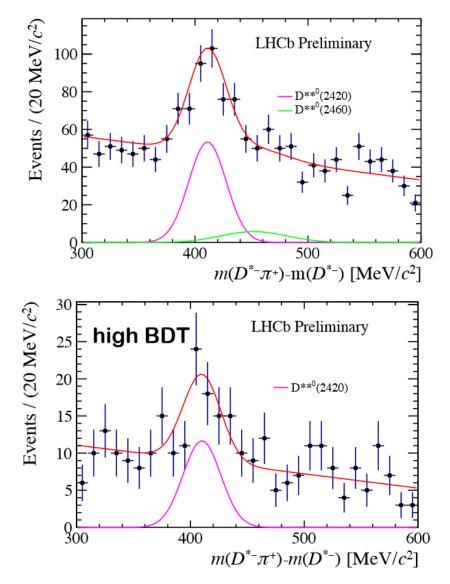
 Misidentification background particularly troublesome due to ambiguities in deriving fit shapes from the control sample

Muonic RD* Uncertainty Breakdown



Contribution of each source to the squared total measurement uncertainty

 Systematic error bars are larger, but measurement is in fact statistics limited


- •Good prospects for future improvement
 - Form factors, shape corrections all taken from fits to data – will reduce by themselves
 - MC stats simple (if CPU intensive) to reduce
 - Substantial progress on better datadriven misID templates for other analyses

Post-fit BDT

D** in data – 3pi

- Investigated creating a D**enriched sample for the 3pi analysis
- •Observed yield used to set upper limit and compare to theory expectation for $\mathcal{B}(B \to D^{*+}\tau\nu)/\mathcal{B}(B \to D^{**+}\tau\nu)$
 - Result is compatible with expected value

