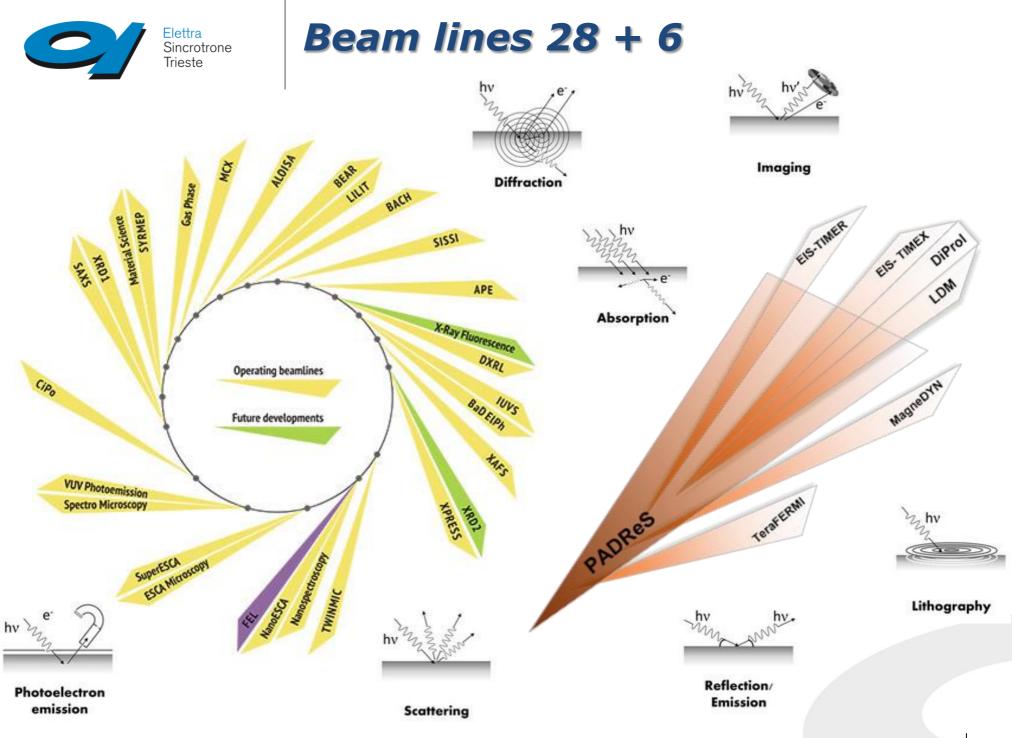
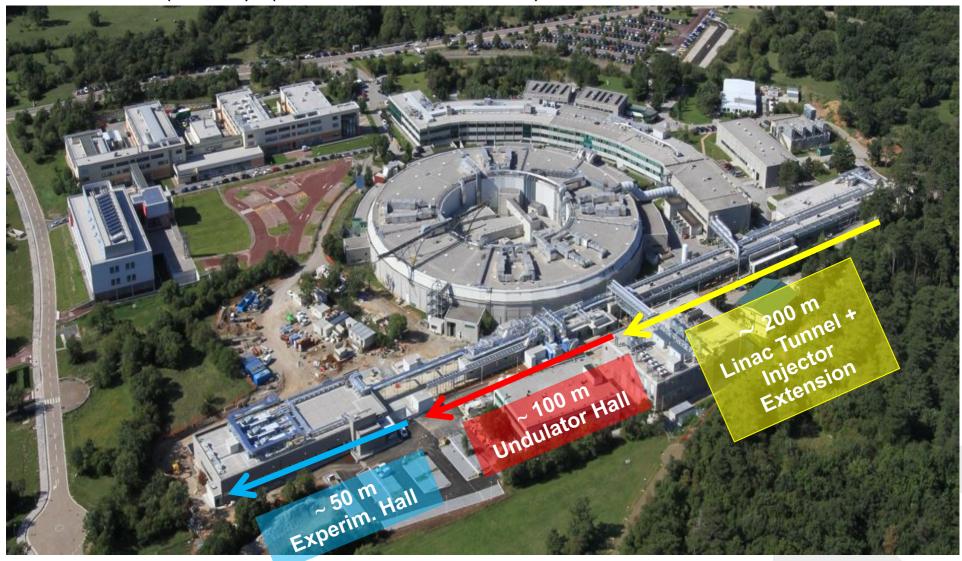


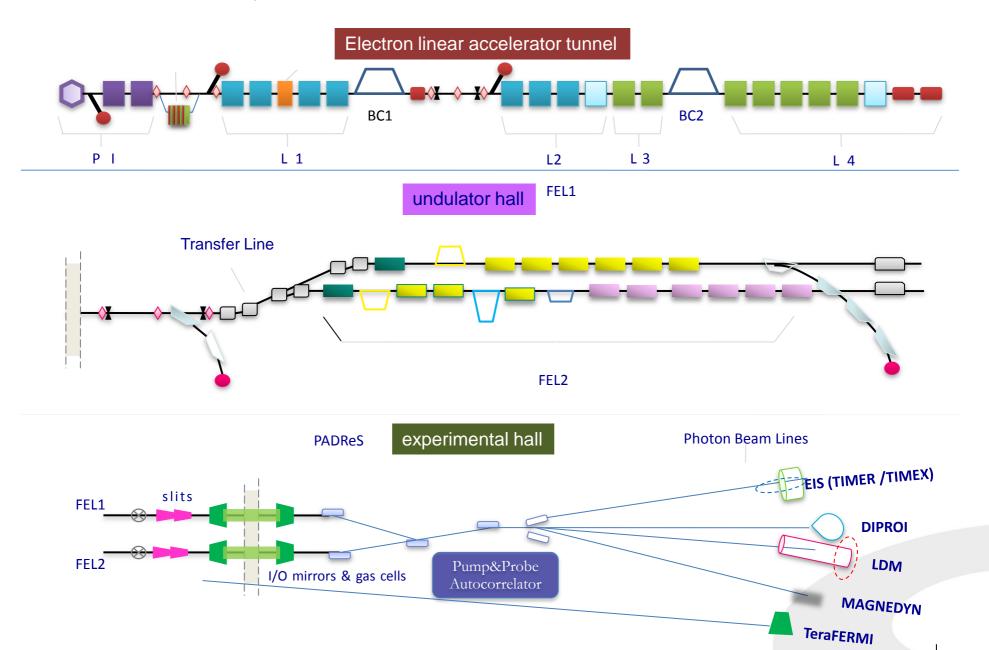
Elettra (and FERMI) Status and upgrades

Emanuel Karantzoulis

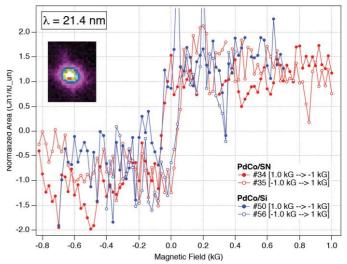

Outline:

- Introduction
- FERMI status and prospects
- Elettra status and statistics
- Short and mid term developments
- Future upgrade: Elettra 2.0


Elettra Sincrotrone Trieste in brief: 2 complementary Light Sources



- Seeded FEL (HGHG), 1.5 (1.8) GeV, 10 Hz (50 Hz) First Lasing Dec.13, 2010
- Open to external users since 2012 (FEL-1) (100-20 nm, 12 62 eV) and 2015 (FEL-2) (20- 4 nm, 62 - 320 eV)



FERMI 2017 in a nutshell

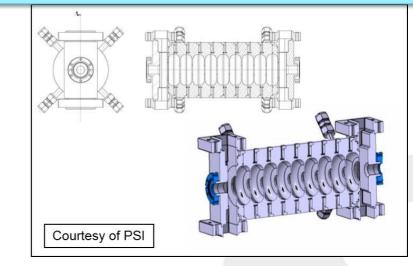
courtesy M. Svandrlik

- ✓ Two operation modes are available for experiments:
 - Low and medium energy (below 1350 MeV, for $\lambda > 5$ nm) at 50 Hz
 - High energy (up to 1550 MeV, for $\lambda \leq 5$ nm) at 10 Hz
- ✓ FEL uptime for users in 2017 close to 90%
- MagneDyn beamline commissioning started in October. The picture shows the first spectra taken, measuring the magnetic hysteresis of a 4 nm cobalt film deposited on a Si3N4 100 nm membrane.

- ✓ FERMI offer to users includes now five end stations connected to the FEL line, plus the TeraFERMI THz beamline and two table-top laser laboratories (T-ReX and CITIUS).
- ✓ 96 experiment proposals submitted to VII call for proposals in October

Future Developments

courtesy M. Svandrlik


- ✓ A number of research activities are ongoing with the goal of defining an upgrade plan for FERMI. Two highlights are:
 - The Echo Enabled Harmonic Generation experiment at $\lambda \leq 5~nm$
 - The design of new S-band accelerating structures, intended to replace the existing BTW sections, tailored for high gradient operation, low breakdown rates and low wakefield contribution.

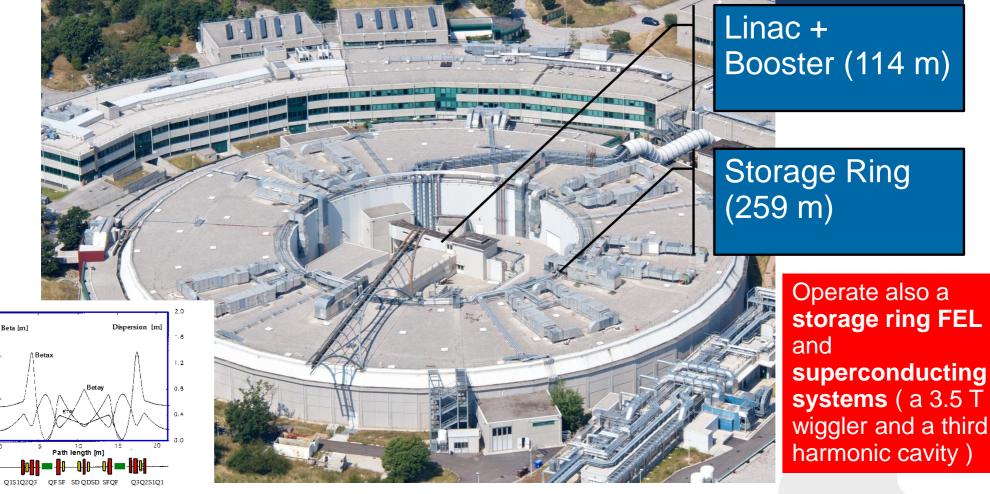
EEHG experiment on FEL-2: May-August '18 Goal: EEHG demonstration at short λ Refurbished U113 as 2nd Modulator

- Length: 1.5 m
- Period length: 11.3 cm
- Number of periods: 13
- Minimum gap: 10 mm
- Tuning range: 200-400 nm

S-band protoype in development with PSI Goal: gradient > **30 MV/m** High Power test at Elettra next Spring

Emanuel Karantzoulis

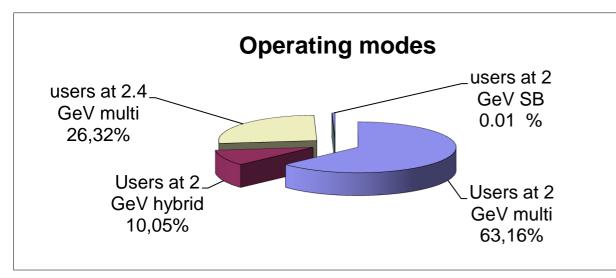
- ESLS XXV, 20-22 November, 2017 DELTA - Dortmund, Germany


FERMI – electron/photon beam parameters

Parameter	Units	Value	
Repetition rate	Hz	10 - 50	
Bunch charge	рС	700	30
Peak current	А	700 🛞	5.4 nm
Bunch length	ps	1.0 Events	5.4 nm
Energy	GeV	1.0 – 1.5	0.02 0.06 0.1 5.44
Energy spread	keV	100	Relative Linewidth (%) Wav
Parameters	Units	FEL-1	FEL-2
Wavelength range	nm	20 - 100	4 – 20
Photon energy	eV	62 – 12	62 - 310
Energy per pulse	μJ	50 - 300	10 – 100
Relative bandwidth (FWHM)	%	0.1	0.1
Pulse length	fs	50 - 100	30 – 70
Power fluctuations (rms)	%	10	30
Polarization		Hor/Vert/Circ	Hor/Vert/Circ

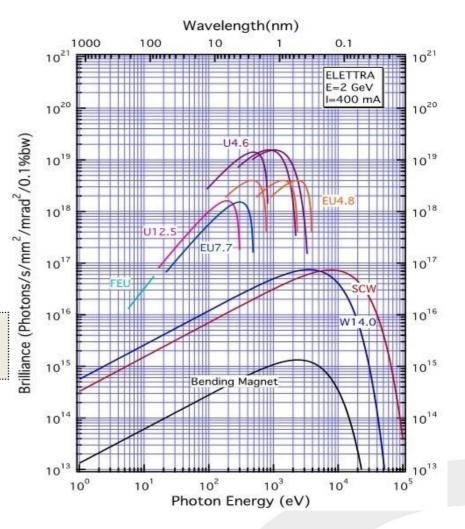
- Third generation light source (DBA 259.2 m), open to external users since 1994
- The machine complex initially made of a 1 GeV linac and a storage ring operating at 2.0 (7nm-rad) and since 1998 also at 2.4 GeV, in 2008 built a full energy injector (2.5 GeV booster plus 100 MeV linac) and since 2010 operates in top-up mode.

Emanuel Karantzoulis


- ESLS XXV, 20-22 November, 2017 DELTA - Dortmund, Germany

Operating modes for users:

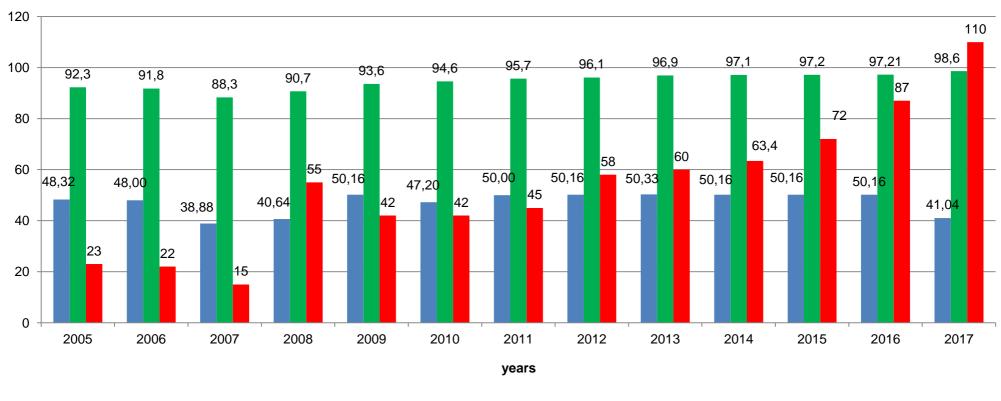
- Operates for 6400 hours per year (24h, 7/7), \geq 5000 hours for users
- Top-up 2.0 GeV, 310 mA for 75 % of users time
- Top-up 2.4 GeV, 160 mA for 25 % of users time
- Filling patterns: multi-bunch 95 % filling or hybrid. Other filling patterns, as single bunch, few bunches or other multi-bunch fillings can be provided.
- 28 beam lines
- More than 900 proposals per year
- Oversubscription rate from 1.5 to 3 depending on the beamline.



Lately high demand for time resolving

IDs and brilliance

ID	type	section	Period (mm)	Nper	gap (mm)	status
U5.6	PM/Linear	12 short	56	18	23	operating
EU10.0	PM/Elliptical	1	100	20+20	13.5	operating
U4.6	PM/Linear	2	46	2 x 49	13.5	operating
U12.5	PM/Linear	3	125	3 x 12	32.0	operating
EEW	EM/Elliptical	4	212	16	18.0	operating
W14.0	HYB/Linear	5	140	3 x 9.5	22.0	operating
U12.5	PM/Linear	6	125	3 x 12	29.0	operating
U8.0	PM/Linear	7	80	19	26.0	operating
EU4.8	PM/Elliptical	8	48	44	19.0	operating
EU7.7	PM/Elliptical	8	77	28	19.0	operating
EU6.0	PM/Elliptical	9	60	36	19.0	operating
EU12.5	PM/Elliptical/QP	9	125	17	18.6	operating
FEU	PM/Figure-8	10	140	16+16	19.0	operating
SCW	SC/Linear	11	64	24.5	10.7	operating



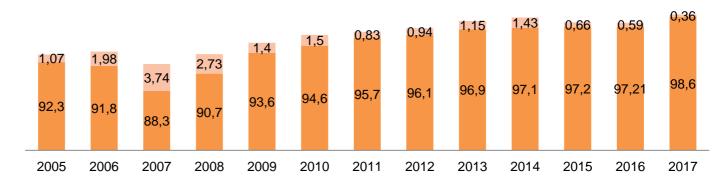
22 ID segments + 1 SCW -> 18 beam lines planar, elliptical, canted, electromagnetic)

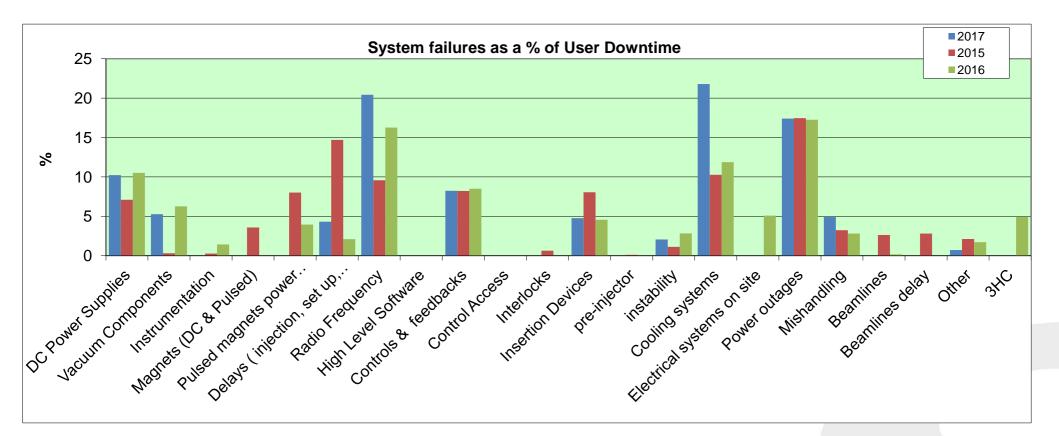
6 bending magnet source points serving 9 beam lines + 1 IR = 10 beam lines

Uptime Statistics

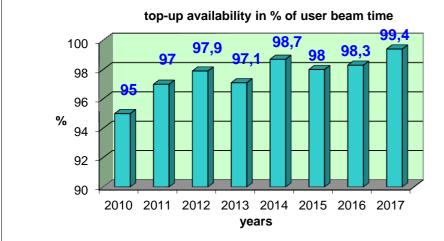
■ user time (x100h) ■ avail

availability (%) mtbf (h)


Maximum running without a beam dump: 603 hours , the average of maxima is about 300 hours


2017 data at 81.8% of total user run time Mean fault duration ~ 1.0 hour No downtime from the injectors

Total availability and downtime due to power surges


availability (%) surges %

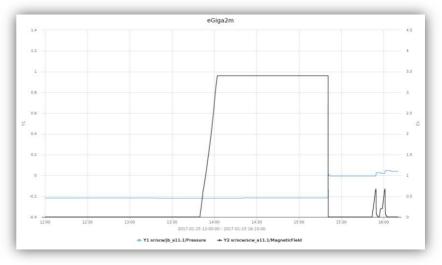
Electron orbit stability requirements meet most of the time provided that ambient temperature is within the defined limits, i.e., $\pm 0.5^{\circ}$ C Short term stability (< 24 hours) is < 10% of the electron beam size Long term (>24 h) is $\leq \pm 5 \mu m$ ptp (max value for >120 h).

System faults during top up down time.

Top-up 0.8 2015 0.7 2016 0.6 2017 of User Time 0.5 0.4 0.3 0.2 0.1 % 0 DCPONE SUPPlies radiofrequency control access controls & ... instability names coolinelaircond Vacuum pused power ... premetor nentation ... mistandline delays systems

Top-up down-time occurs when the intensity drops to less than 99.5% of the nominal.

Pure down-time starts when intensity drops at 50% or less.

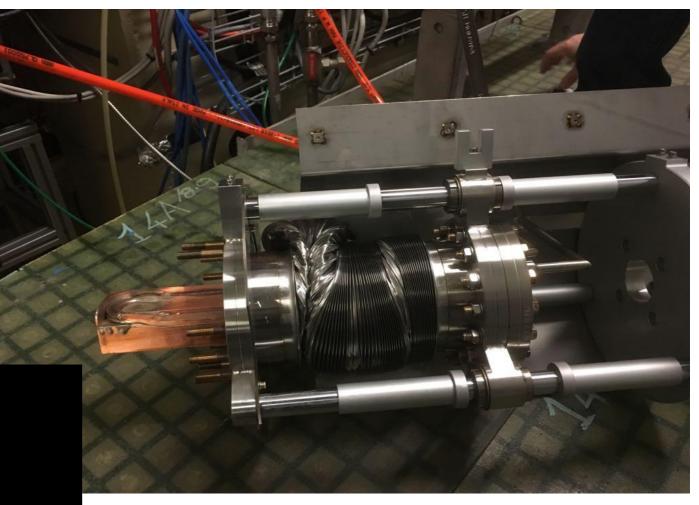


Some Problems

Problem 1. (minor) -> 2 beam lines inactive

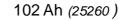
On 15/1/2017 the superconducting wiggler after a quench could not exceed 0.63 T. The magnet suffered 12 quench in 2 years (3 at 2 GeV and 9 at 2.4 GeV). A quench protection system is developed and under tests.

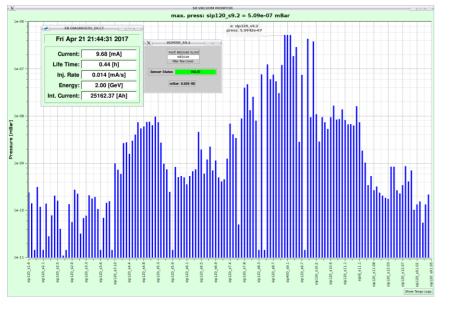
Until 7/2/2017 various tests performed indicated that the magnet is damaged. Two BINP experts came on 19/2 confirming that the magnet is damaged with most probably a short circuit. (the magnet was originally built in 2002 but remained unused until 2012 and damaged, BINP fixed the problem at that time with the occasion of the refurbishment of the cryostat in 2012 since the two relevant beam lines XRD2 and XPress were ready)



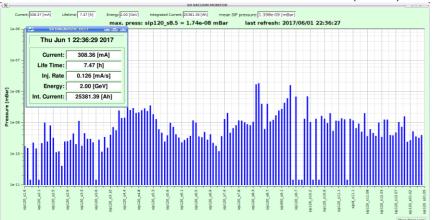
The magnet is rebuild by BINP and is expected to be assembled to the cryostat end of December 2017.

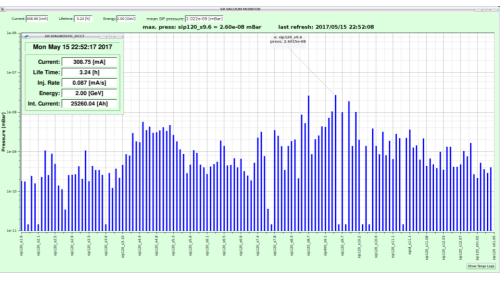
On 18/3 2017 suffered internal flooding due to a cooling tube blockage and a flow meter failure that did not trigger a beam dump

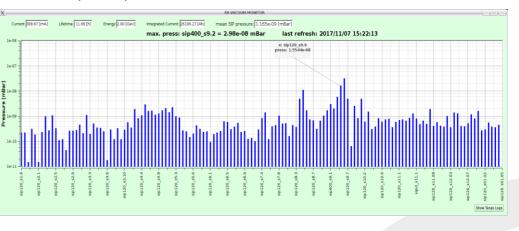

Problem 2 -> major flooding




40 m of vacuum chamber flooded. The machine was repaired during the spring shutdown (1 month) and up in time for the next run (168, 20/4-11/6) but due to low lifetime (radiations) we decided to cancel the run for users and instead dedicate the run to vacuum conditioning.




0 Ah *(25158)*



948 Ah (26106) LT =12 h about 50% of the usual 24 h at 2 GeV 310 mA

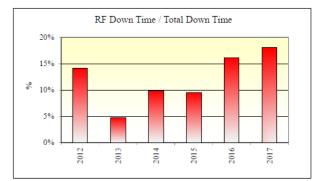
The above confirms what is already known: radiation conditioning is not efficient for water contamination. Changed all we could and had (spares), remaining parts will be changed during the winter shutdown

Elettra short and mid term developments

Elettra has been upgraded during the years to keep the performance competitive to the new light sources being built in the recent years. Some current upgrades include:

- □ RF upgrade (booster Solid State Amplifier)
- □ PS-controls upgrade
- Build new bpm electronics (detectors)
- □ Upgrade vacuum system electronics
- □ Fixed gap undulators

Studies performed to exploit the margins for other relatively low impact upgrades to extend the performance to the ultimate limits allowed by the present machine also in terms of operability and stability.


Some possibilities (and actualities) include :

- Increasing the energy to 2.5 GeV, 140 mA (reached 2.46 for more need additional PS)
- Reduction of the emittance, presently closest to the theoretical limit for a DBA, with DBC optics
- Low alpha optics for short bunches (coherent infrared papers published)
- Unifying space in the arcs, to integrate the two separated shorter straight section in a 2.5 m straight to provide possibilities for new insertion devices.
- Reduce the coupling by installing skew quadrupoles

Booster RF -> SSA

- ✓ CW 500 MHz 60 kW klystrons out of production, the 4 klystron amplifiers are old. Replacing started from the booster.
- ✓ SSA 18 kW 500 MHz in 6 modules

Ref. C. Pasotti

PS (controls) upgrade

- ✓ Almost all big PS have the new Beaglebone control system
- ✓ Some correctors have been replaced with the new ones, intent to replace all of them (2x82) soon (must be constructed) Already sold 4 to MAXIV, will be delivered about 180 to ESS.


old

new

old

Ref. M Cautero, R. Visintini

new

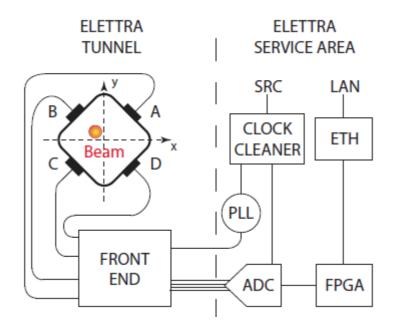
Emanuel Karantzoulis

– ESLS XXV, 20-22 November, 2017 DELTA - Dortmund, Germany

New bpm detectors

The Project will finish by end of 2018 aiming at a better and cheaper, than the existing, detector.

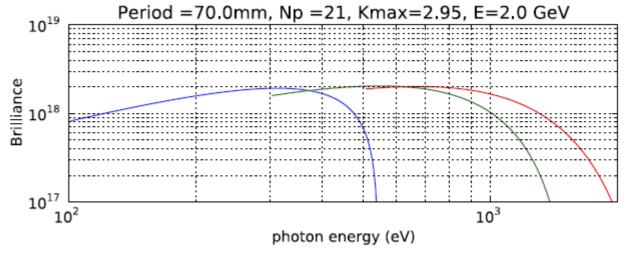
First part done (DIAMOND expressed interest to collaborate)


A NOVEL ELECTRON-BPM FRONT END WITH SUB-MICRON RESOLUTION BASED ON PILOT-TONE COMPENSATION: TEST RESULTS WITH BEAM

G. Brajnik, S. Carrato, University of Trieste

S. Bassanese, G. Cautero, R. De Monte, Elettra-Sincrotrone Trieste

Proceedings of IBIC2016, Barcelona, Spain

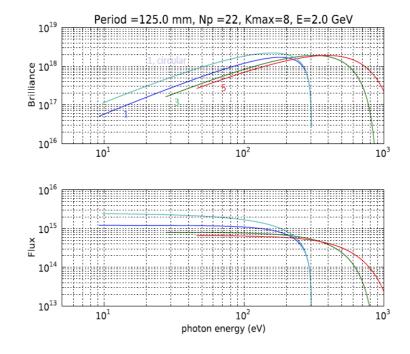

Presented a novel and original four-channel-front end developed for a beam position monitor (BPM) system. It is demonstrated for the first time the **continuous calibration of the system by using a pilot tone for both beam current dependency and thermal drift compensation**, completely eliminating the need for thermoregulation.

Fixed gap undulator

Installed for ALOISA beam line. Excellent performance and for operations almost "invisible"

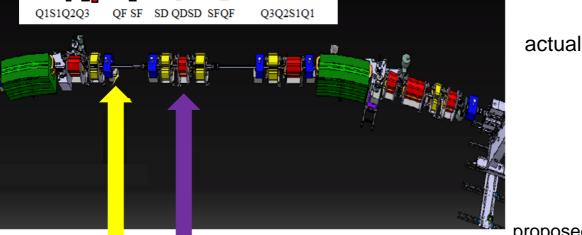
Ref: B. Diviacco

Original AGU: magnets from 1994 Material Neorem 450i uncoated

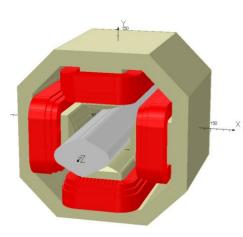


MOST Beam Line

All straight sections of Elettra are occupied but still there is demand for new insertion device based beam lines. An upgrade plan is presently being developed which will merge the experiments running on the existing GasPhase and CiPo (Circular Polarization) beam-lines. Two new variable polarization undulators will be developed for this purpose, one for the lower $(10 \div 200 \text{ eV})$ and one for the higher photon energies ($80 \div 2000 \text{ eV}$), while the old electromagnetic elliptical wiggler serving CiPo will be dismissed.

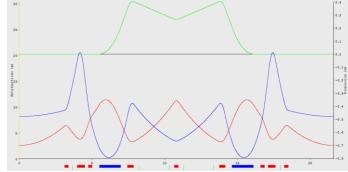

Low energy -> variable polarization APU (fixed gap)

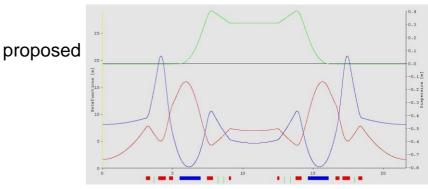
(http://www.kyma-undulators.eu/) is constructing the high energy one and expressed interest to construct the low energy one as well.



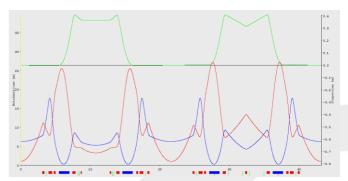
Unifying space in the arcs

Room for skew quad, <0.3m


Elettra Sincrotrone Trieste



About 2.5 m unified free space can be gained (now are two separated 1 and 1.5) Need to build 2 quadrupoles / achromat


Magnetic design according to specification:

- physical length < 0.3 m
- integrated norm. strength k₁I < 0.015 m⁻¹
- bore diameter \ge 85 m
- power supply at \leq 20 A (30W)

Same emittance, chromaticity etc.

Or for partial replacement (fully matched)

Based on latest trends in this field, i.e. next generation, ultimate light sources (ULS):

- Much higher brilliance (more than one order of magnitude at lower photon energies, e.g. 1 keV),
- High level of coherence in both planes (3rd generation sources have only high vertical coherence),
- Smaller spot size and divergence
- Higher flux and a variety of insertion devices.

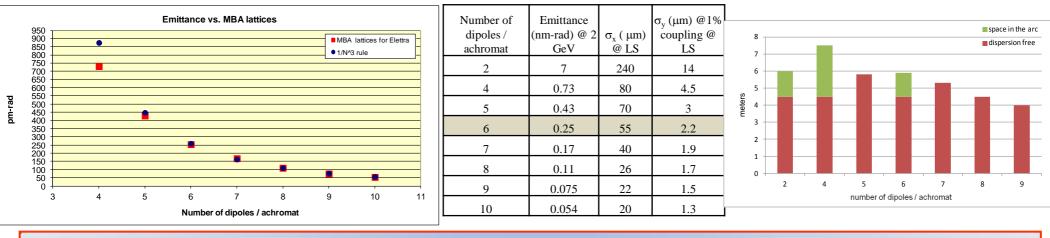
A first version of the conceptual design for Elettra 2.0 based on the above is already available

Note: some of our users are not impressed / don't care and many are alarmed. Microscopy BLs seem happy.

Many don't care about emittance and coherence instead they ask for short pulses, high dipole fields and round beams.

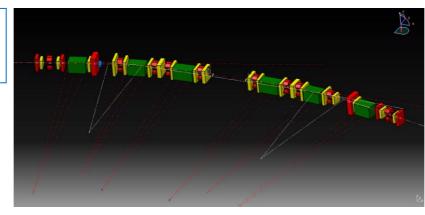
Can a compromise be reached? To investigate it we organize the PHANGS workshop 4-5 Dec 2017 (<u>https://www.elettra.eu/Conferences/2017/PHANGS/</u>)

Elettra 2.0 requirements


- The requirements for the new machine have been developed based on the interaction with the users' community and considering costs optimization.
- A dedicated workshop on the future of Elettra was held in April 2014 to examine the various requirements

Design boundary conditions
Beam energy: 2 GeVEasier partBeam intensity: 400 mAEmittance: to be reduced by more than 1 order of magnitudeHorizontal electron beam size: less than 60 μmConserve filling patterns: multibunch, hybrid, single bunch, few bunches

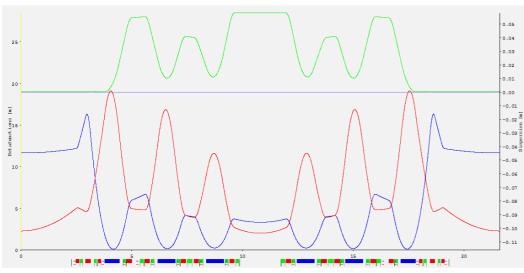
Keep the same building and the same ring circumference (259-260 m) Existing ID beam lines and their position should be maintained Free space available for IDs: not less than that of Elettra Keep the existing bending magnets beam lines Use the existing injectors, that means off-axis injection Minimize dark time


Elettra 2.0 Lattice quest

Best configuration up to now satisfying all requirements including large free space for IDs is based on a special **six-bend** achromat (S6BA). Versions that minimize interferences and induce minimal position shift of the dipole beam lines were examined. Possible new beam lines from central dipoles

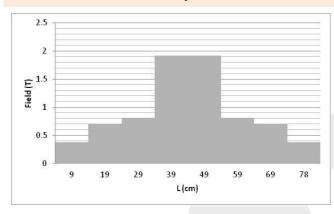
E. Karantzoulis,"Elettra 2.0 - The diffraction limited successor of Elettra", Nuclear Inst. and Methods in Physics Research, A 880 (2018) 158–165

The S6BA arc

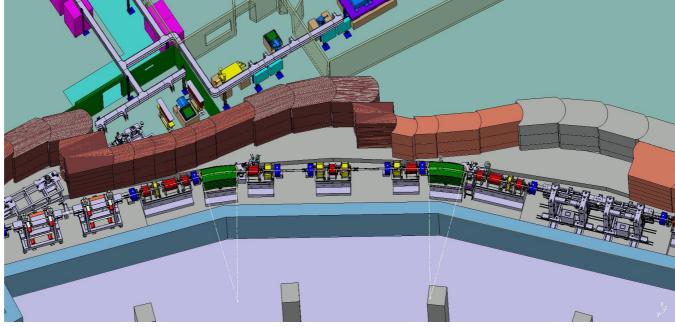

Latest version but maybe not final

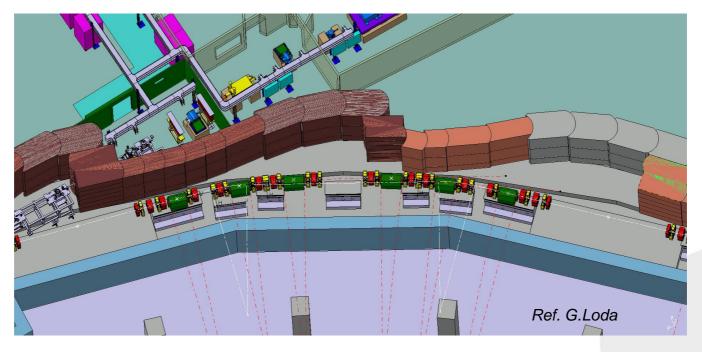
Emanuel Karantzoulis

– ESLS XXV, 20-22 November, 2017 DELTA - Dortmund, Germany


For graphics used "OPA version 3.39", PSI, 2014 by A. Streun

Dipoles electromagnets at 0.8 T No Longitudinal Gradient (LG) BUT Users ask for higher dipole fields For round beams consider a ~57% reduction on both emittances


Current version:

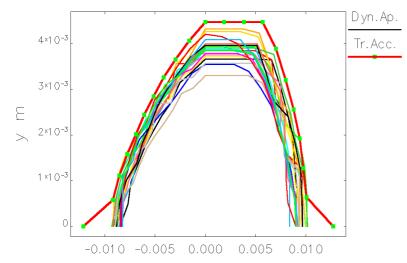

Emittance 0.25 nm-rad

LG+anti-bend version: **Emittance 0.19 nm-rad** The 2 and 5 dipoles in LG.

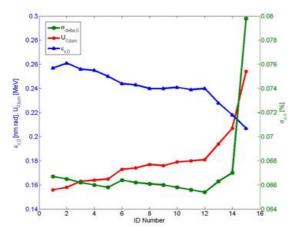
Fits in the old tunnel

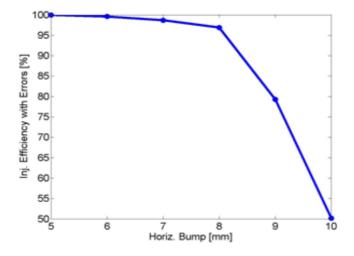
Emanuel Karantzoulis

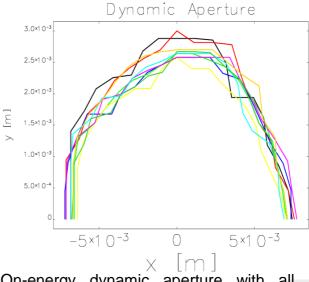
- ESLS XXV, 20-22 November, 2017 DELTA - Dortmund, Germany


List of optics and rf functions and magnet errors

Circumference (m)	259.2
Energy (GeV)	2
Number of cells	12
Geometric emittance (nm-rad)	0.25
Horizontal tune	33.10
Vertical tune	9.19
Betatron function in the middle of straights (x, y) m	(9.5,3.2)
Horizontal natural chromaticity	-76
Vertical natural chromaticity	-52
Horizontal corrected chromaticity	+1
Vertical corrected chromaticity	+1
Momentum compaction	3.44e-004
Momentum compaction second order	3.60e-004
Energy loss per turn (with no IDs) (keV)	156
Energy spread	6.67e-004
Jx	1.52
Jy	1.00
Jdelta	1.48
Horizontal damping time (ms)	14.8
Vertical damping time (ms)	22.9
Longitudinal damping time (ms)	15.0
Dipole field (T)	<0.8
Quadrupole gradient in dipole (T/m)	<15
Quadrupole gradient (T/m)	<50
Sextupole gradient (T/m ²)	<3500
RF frequency (MHz)	499.654
Beam revolution frequency (MHz)	1.1566
Harmonic number	432
Orbital period (ns)	864.6
Bucket length (ns)	2
Natural bunch length (mm, ps)	2.16 , 7.2
Synchrotron frequency (kHz)	5.23

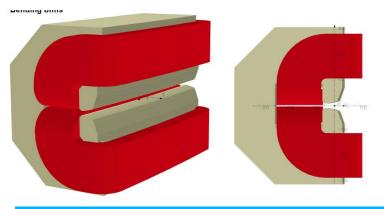

Element Type	Parameter	Value	Unit
Dipole	Δx	20	μm
	Δy	20	μm
	Δz	300	μm
	Roll angle	100	µrad
	ΔBl/Bl	0.01	%
	Δx	20	μm
	Δy	20	μm
Quadrupole	Δz	300	μm
	Roll angle	100	µrad
	ΔBl/Bl	0.01	%
	Δx	20	μm
Sextupole	Δy	20	μm
	Δz	300	μm
	Roll angle	100	µrad
	ΔBl/Bl	0.01	%
Corrector	Δz	20	μm
	Roll angle	100	µrad
BPM	Δx	20	μm
	Δy	20	μm
	Δz	300	μm
	Roll angle	100	µrad




Dynamic aperture for the bare lattice, and in the presence of machine errors plus corrections, for 20 independent error seeds

Emittance, energy spread and energy loss per turn versus the number of insertion devices at minimum gap / max phase

Injection efficiency versus the horizontal beam bump amplitude



On-energy dynamic aperture with all IDs at functioning settings with alignment errors and the induced optical asymmetries. The wiggler is set to 3.5 T.

Almost final with Lm≈Lp (worst case 10 mm difference). Use of new materials such as Cobalt – Iron alloys will also be considered

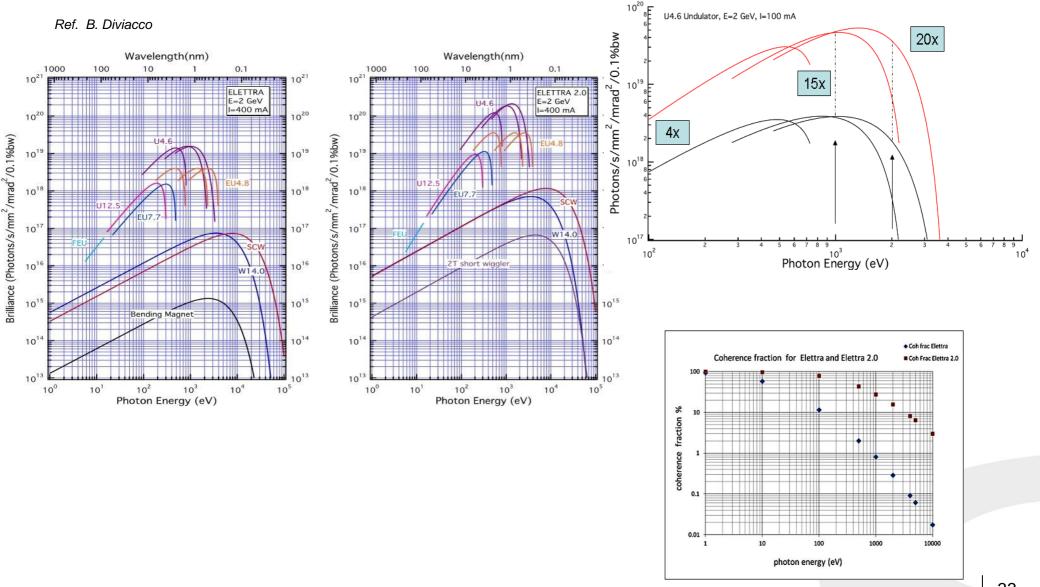
The bending integrated quadrupole component is done by only the pole profile geometry. In order to optimize space and performances, different coil and frame geometries are evaluated. Space between the pole terminations will be employed in order to obtain the requested frame stiff. signs were developed with the vac

The quadrupole designs were developed with the vacuum chamber in order to resolve all the possible transversal interferences (beam lines). Asymmetric poles geometry has been opted.

The sextupole magnets have the higher design issue. The transversal interferences between coils and vacuum chamber are resolved.

Emanuel Karantzoulis

- ESLS XXV, 20-22 November, 2017 DELTA - Dortmund, Germany


Ref. D. Castronovo (Opera)

32

Elettra 2.0 brilliance

Assuming the existing IDs

Elettra and Elettra2.0

Parameter	Units	Elettra	Elettra2.0
Circumference	m	259.2	259.(2-8)
Energy	GeV	2 - 2.4	2
Horizontal emittance	pmrad	7000	230-280
Vertical emittance	pmrad	70 (1% coupl)	2.5
Beam size @ ID (σx,σy)	μ m	245,14 (1% coupl)	43,3
Beam size at short ID	μ m	350, 22 (1% coupl)	45,3
Beam size @ Bend	μ m	150, 28 (1% coupl)	17,7
Bunch length	ps	18 (100 with 3HC)	9 (70-100 with 3HC)
Energy spread	DE/E %	0.08	0.07
Bending angle half achromat Lattice	degree	15 DBA	3.6 and 2x5.7 S6BA

- Elettra is running well although is 24 year old, many small projects contribute to this including replacement of old / obsolete hardware.
- ✓ The water flooding was mainly due to human negligence
- The first version of the conceptual design for Elettra 2.0 is available (Elettra 2.0 Technical Conceptual Design Report", ST/M-17/01, Elettra – Sincrotrone Trieste, internal document (2017)) Looking for money (170 Meuro including machine, infrastructures and beam lines)
- ✓ Many mid term possibilities also in discussion (for less money)

- ✓ FERMI@Elettra runs successfully giving unique opportunities to experimentalists.
- ✓ The EEHG will be tested soon.

Thank you for your attention

1993 ESLS	ESRF
1994 ESLS II	ESRF
1995 ESLS III	Daresbury
1996 ESLS IV	ELETRA
1997 ESLS V	MAX-lab
1998 ESLS VI	DELTA
1999 ESLS VII	BESSY
2000 ESLS VIII	LURE
2001 ESLS IX	ANKA
2002 ESLS X	SLS
2003 ESLS XI	ESRF
2004 ESLS XII	Desy
2005 ESLS XIII	ALBA
2006 ESLS XIV	SOLEIL
2007 ESLS XV	Diamond
2008 ESLS XVI	Daresbury
2009 ESLS XVII	DESY
2010 ESLS XVIII	ELETRA
2011 ESLS XIX	ISA
2012 ESLS XX	BESSY
2013 ESLS XXI	ANKA
2014 ESLS XXII	ESRF
2015 ESLS XXIII	SLS
2016 ESLS XXIV	Max_Lab
2017 ESLS XXV	DELTA
	1994 ESLS II 1995 ESLS III 1996 ESLS IV 1997 ESLS V 1998 ESLS VI 1999 ESLS VII 2000 ESLS VIII 2001 ESLS IX 2002 ESLS XI 2003 ESLS XI 2004 ESLS XII 2005 ESLS XII 2006 ESLS XIV 2007 ESLS XVI 2007 ESLS XVI 2009 ESLS XVII 2010 ESLS XVII 2010 ESLS XVII 2011 ESLS XIX 2013 ESLS XXI 2013 ESLS XXII 2015 ESLS XXII 2015 ESLS XXIII

ESRF	4
DARESBURY	2
ELETTRA	2
MAX-Lab	2
DELTA	2
BESSY	2
LURE	1
ANKA	2
SLS	2
DESY	2
ISA-AARHUS	1
SOLARIS	0
ALBA	1
SOLEIL	1
DIAMOND	1