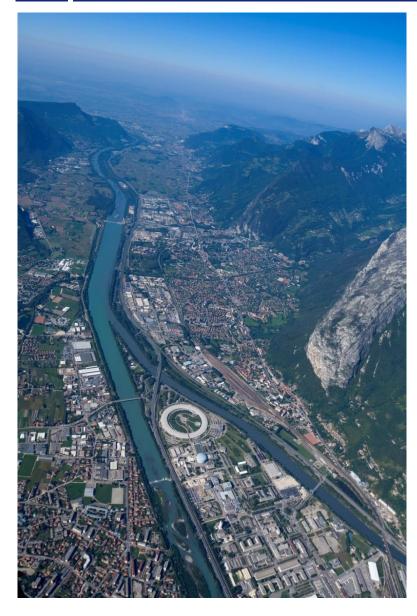
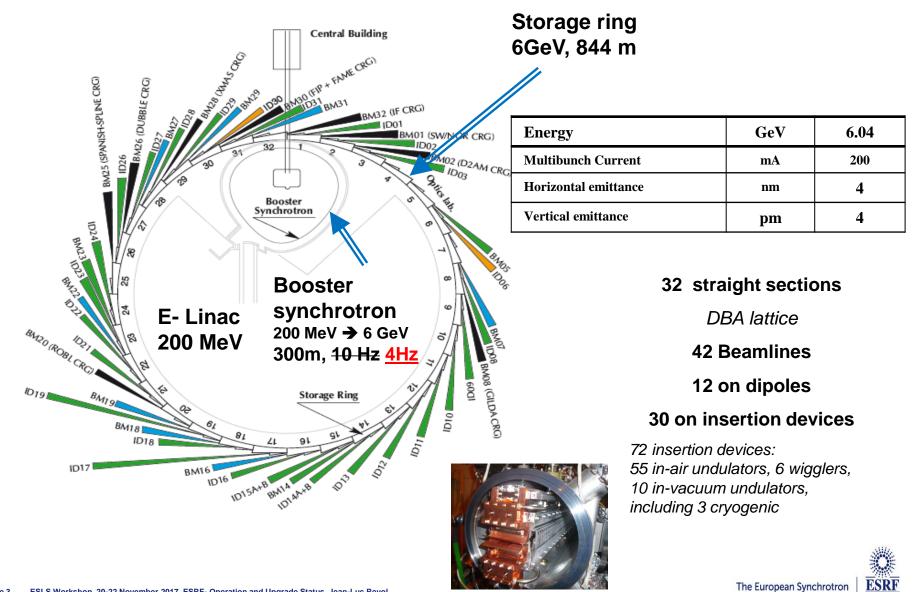
technische universität dortmund

The XXV European Synchrotron Light Sources Workshop

ESRF: Operation and Upgrade Status


Jean-Luc Revol 20-22 November 2017


The European Synchrotron

OUTLINE

- The ESRF in brief
- > Operation performance
- ≻Top-up operation
- > ERSF/EBS project overview
- > Schedule 2015-2020
- Project design & procurement status
- Assembly & Installation Phase

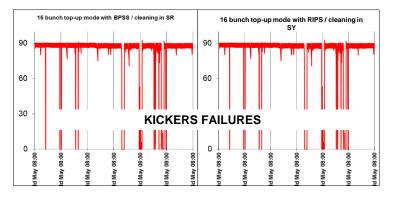
OPERATION : MACHINE STATISTICS FOR 2014-2017

Throughout 2016, the ESRF delivered 5485 hours of beamtime to its users, out of the 5537 planned

	2014	2015	2016	2017 (until Nov.)
Availability (%)	99.11	98.53	99.06	98.05
Mean Time Between Failures (hrs)	105.5	93.6	93.8	58.4
Mean duration of a failure (hrs)	0.94	1.37	0.88	1.14

2014: 52 Failures / 2015: 59 Failures / 2016: 59 Failures / 2017: 61 Failures until now.

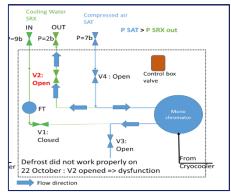
MAIN LONG FAILURES


RUN2017-02

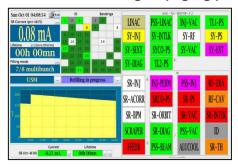
11 failures k6, 9 due to kicker3.

The thyratron was suspected and replaced.

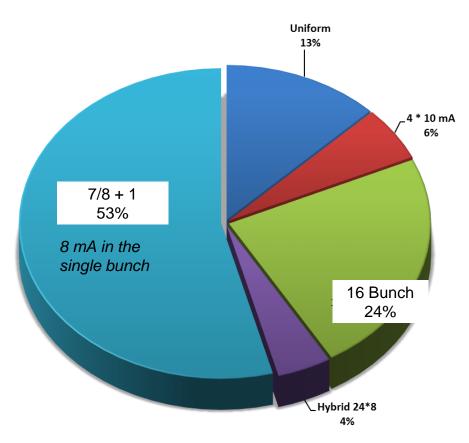
RUN2017-04


13 failures due to bad synchronization of the 4 kickers @ 4 Hz.

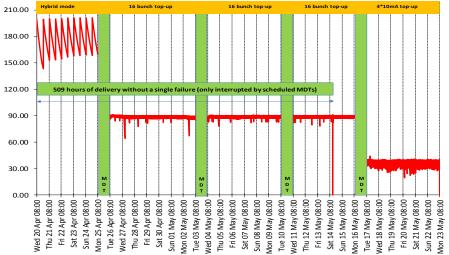
RUN2017-05


Duration front end closed : 12h30 Compressed air in the water beamline water cooling network.

RUN2017-04 Duration : 238 mn Storm and lightning <u>on ESRF site</u> with electrical drop.



RUN2017-04 Duration : 343 mn A circuit breaker triggered, due to a air damaged (aging)



OPERATION: FILLING MODES IN 2017

2016-02: CURRENT PROFILE FOR HYBRID + TOP-UP MODE [16 bunch + 4 * 10 mA]

16 Bunch in top-up since 26 April 2016 High brightness

I max = 90 mA, Refill every 20 mins, delta I = 5 mA, Vertical emittance < 10 pm

1) Suppress the vertical blow-up during cleaning (suppress the impurity) In time structure mode Was 1nm.rad vertically during 20 sec → now ZERO

Cleaning performed in the booster prior to injection

- → A few shifts during MDT with the specialized beamline ID18
- → Routinely performed in 16 bunch and 4 bunch

2) Define the injection frequency

Was 6 and 4 hours with a vertical blow-up of the vertical emittance to increase the lifetime

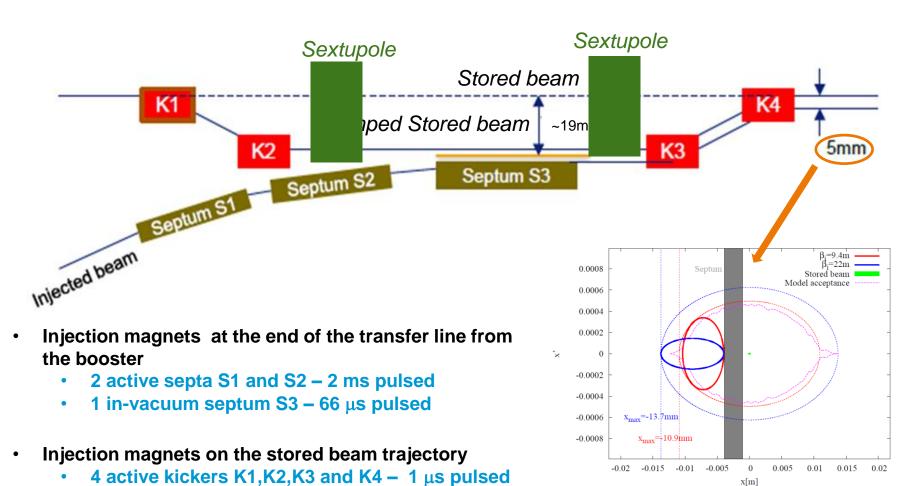
- \rightarrow A few shifts with users during MDT to test different injection frequencies → now 20 mn in 16 bunch and 4 bunch with standard low vertical emittance
- 3) Automatize the injection process

Was manual actions from the operators lasting a few minutes

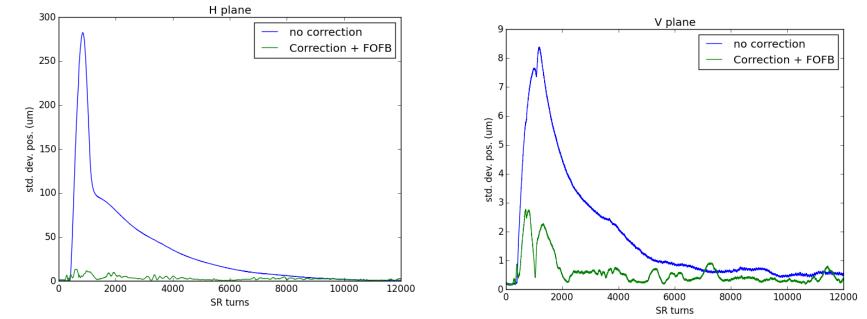
 \rightarrow now automatic sequencing of the various equipment,

- including error management
- → Routinely used in 16 bunch and 4 bunch

4) Minimize the orbit perturbation of the stored beam during injection Was more than 1mm horizontally and a few hundred µm vertical

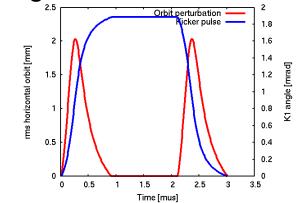

→ now 100 µm peak H and 10 µm peak V, routinely achieved in all modes

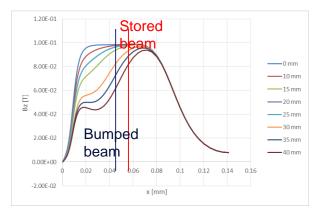
- \rightarrow A few MDT shift with users to determine their sensitivity. Most of them are not sensitive or could do normalization One beamline very very sensitive to horizontal motion with ms resolution → See all perturbations with high resolution! ... could use gating
- → Sensitivity of beamlines using coherence still to be fully assessed


INJECTION INTO THE STORAGE RING

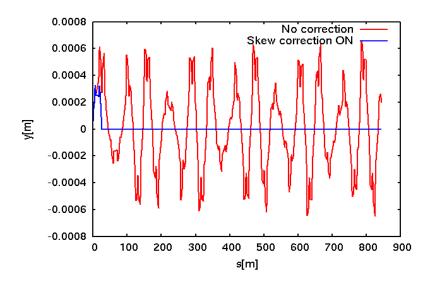
• 2 sextupoles located within the injection bump producing non linear effects

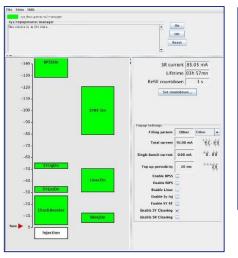
• Septa: fringe fields, depends on field strength and distance to the stored beam

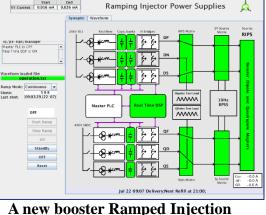



• The perturbation is reproducible and now corrected by the Fast Orbit Feedback (FOFB) system

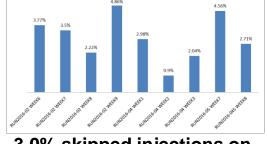
→ Perturbation reduced to a few microns in both planes

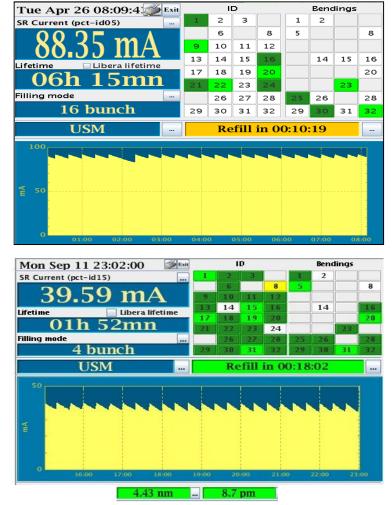

- Bump non-closure, 4 identical kickers pulse shape required (timing, pulse shape,...) → Need precise tuning and reproducibility
- Sextupoles located inside the injection bump (dominating effect):
 - B_v(x) evolves quadratically
 - Amplitude (time) dependent orbit distortion
 - Amplitude (time) dependent β-beat
- \rightarrow Both resulting in apparent emittance increase
 - Now largely corrected by adding copper shims inside the kickers ferrite gap to generate a nonlinear field
 - ➔ In parallel an active feed-forward system is in operation using a vertical and horizontal shaker


- Vertical perturbations also observed from : coupling, misaligned elements...
- Vertical perturbation dominated by non-linear kicker, vertical offsets and roll angles:
- Use a pair of skew quadrupoles to locally correct the vertical perturbations



TOP-UP IN USER MODE

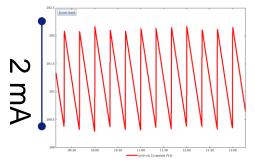

- Top-up operation in 16x6 and 4x10 bunch modes since April 2016:
 - Refill every 20 minutes in 16 bunch and in 4 bunch



Power Supply (RIPS) is in operation

Injection sequencer in operation

3.0% skipped injections on average over year 2016-2017:

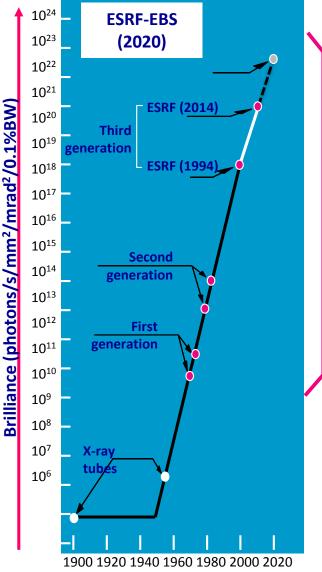

٠

SHORT AND MEDIUM TERM PERSPECTIVES

1) Use cleaning in the injector in 7/8+1.

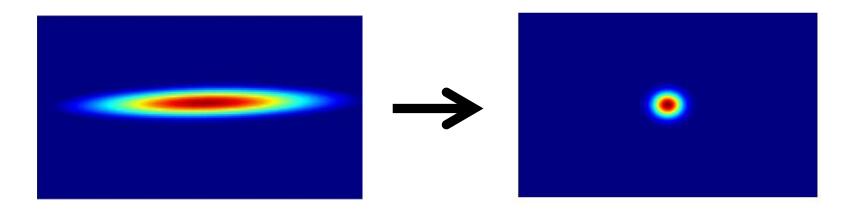
- ➔ Envisaged this run
- 2) Implement top-up in 7/8+1
 - ➔ Envisaged in 2018
 - → Depending on the results of the last tests with users, further improvement could still be envisaged to reduce perturbations
- 3) Supress sextupoles in the bump
 - ➔ Done for the new machine
- 4) <u>Improve Septum leakage field effects</u>
 → New septa for the new machine
- 5) Improve Septum and kickers power supply stability → Will be implemented for the new machine

ESRF-EBS: AN AMBITIOUS NEW STANDARD FOR SYNCHROTRON STORAGE RINGS


ESRF Extremely Brilliant Source ESRF-EBS – 150 M€ (2015-2022)

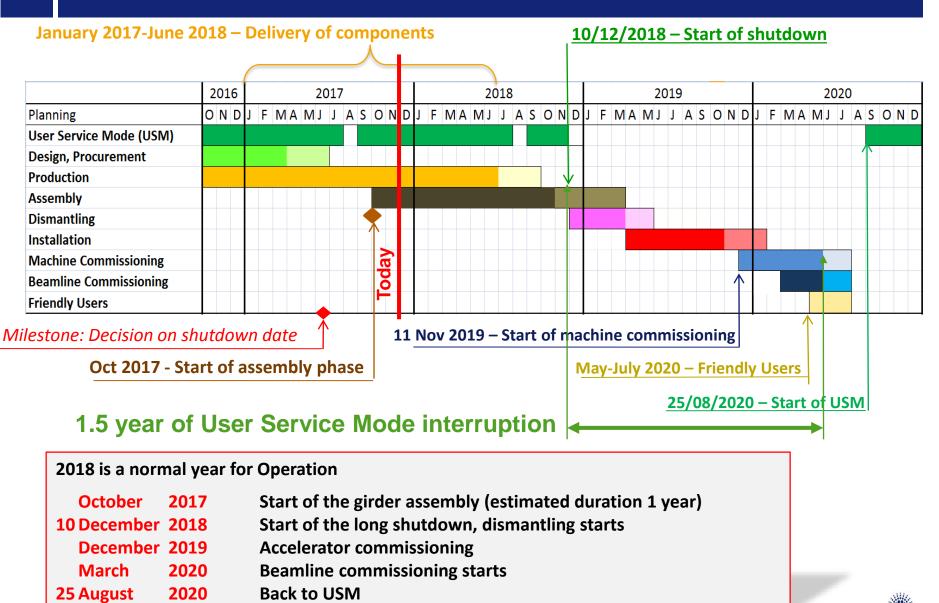
ESRF-EBS

- ~100 times more brilliant and coherent X-rays
- Programme to exploit the qualities of this new and unique extremely brilliant X-ray source:
 - Creation of new beamlines
 - Innovative detector programme
 - « Data as a Service » strategy


Budget for the source only: 104 M€

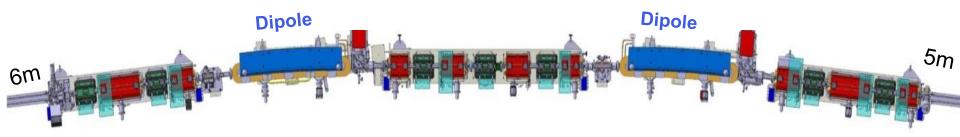
Synchrotron Radiatior

Reduce the horizontal emittance from 4nm to 0.14nm

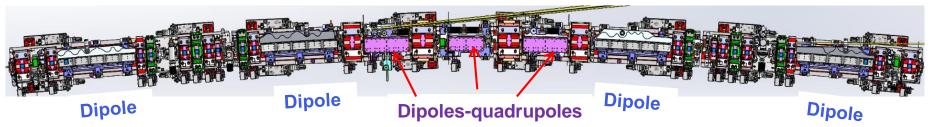


Beam-line experiments can benefit from :

an <u>increase in brilliance</u> an <u>increase of coherence</u> (the coherent fraction, in hor. plane)

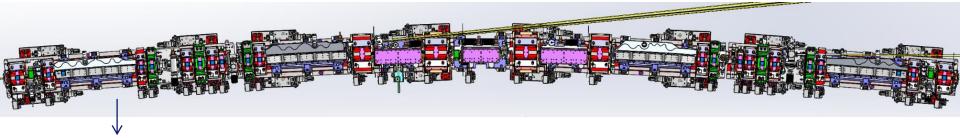


OPERATION AND EBS PROJECT PLAN (2015-2020)


Present ESRF lattice

32 cells, Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell ID length = 5 m (standard) / 6m / 7m

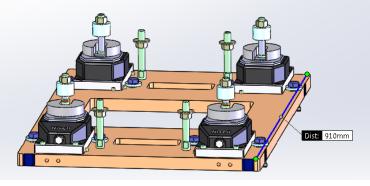
ESRF EBS lattice


Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell 32 identical arcs 21.2 m long, ID length = 5 m

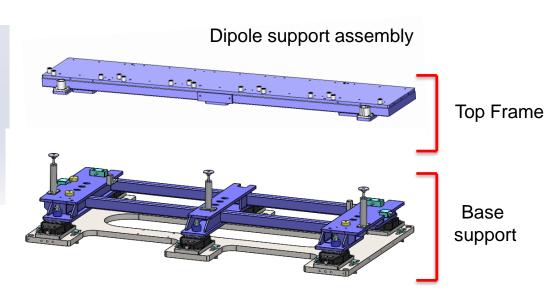
31 magnets per cell instead of 17 currently Free space between magnets (total for one cell): **3.4m** instead of **8m** today !!

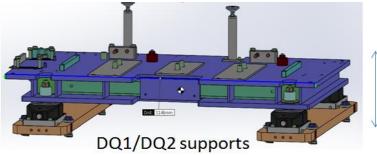
GIRDERS

Four girders per cell to install:


- Magnet supports
- Magnets
- Vacuum equipment
- Diagnostics

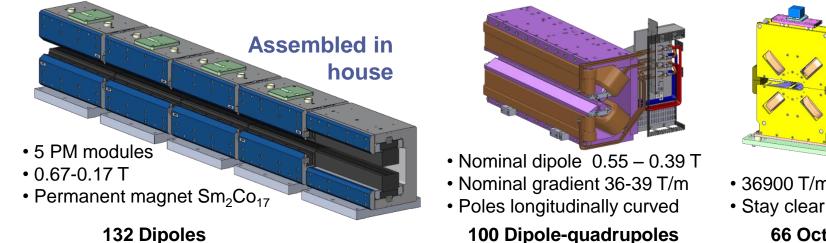
Bare girder weight: ~6t Fully equipped girder: ~12-13t 129 girders in total


More than 70% of the girders produced About 30 girders at ESRF, the remaining ones stored at the factories

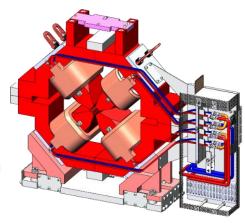


`MAGNET SUPPORTS

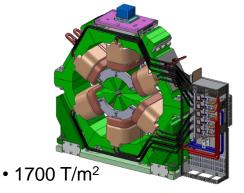
QF6/QF8 supports


200mm

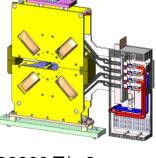
About 70% of the supports delivered



MAGNETS: MORE THAN 1000 MAGNETS TO PRODUCE



High Gradient • 89 & 87 T/m

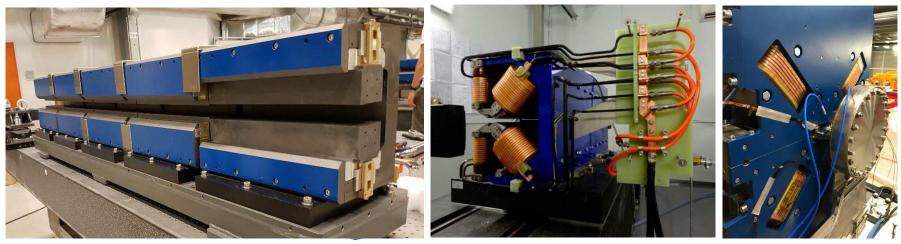

Moderate • Up to 54 T/m

524 Quadrupoles (132 HG, 392 MG)

 Including correction coils **196 Sextupoles**

• 36900 T/m3 Stay clear for SR

66 Octupoles


- Horizontal: 0.1 T.mm
- Vertical 0.1 T.mm
- Skew quad: 0.12 T

98 Correctors

The European Synchrotron

MAGNETS: MORE THAN 1000 MAGNETS TO PRODUCE

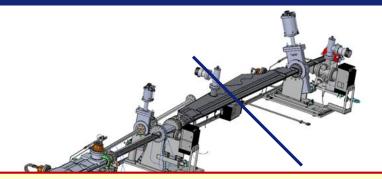
132 Dipoles

100 Dipole-quadrupoles

66 Octupoles

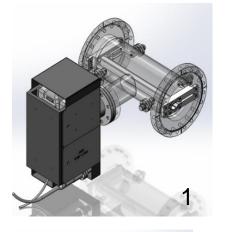
About 60% of the magnets produced, 40% delivered

524 Quadrupoles (132 HG, 392 MG)

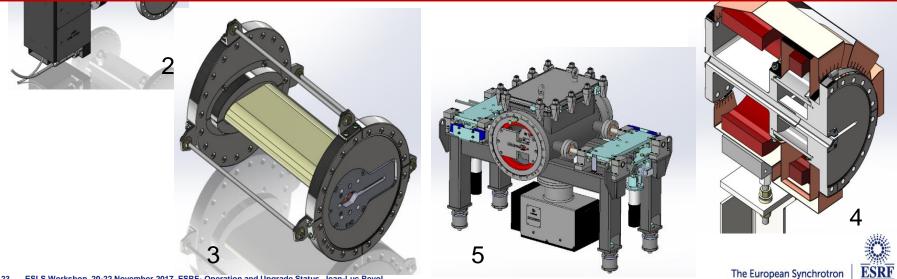

196 Sextupoles

✓ <u>Three main families of chambers:</u>

Low profile stainless steel chambers (inside combined dipole-quadrupoles & HG


About 25% of the aluminum chambers delivered About 10% of the Stainless Steel chambers delivered Production in line with the assembly process

Several batches of Valves, Pumps, Bellows etc have been deliverd


ESRF

VACUUM CHAMBERS – CH12 DIAGNOSTICS

- 1. H stripline
- 2. V stripline
- 3. Shaker
- 4. Current transformer
- 5. Beam losses collimator

ABSORBERS DESIGN : TWO FAMILIES

Toothed absorber

ABS CH13-1-13

ABS CH4-1-1

No weld, no braze

ABS CH9-1-29

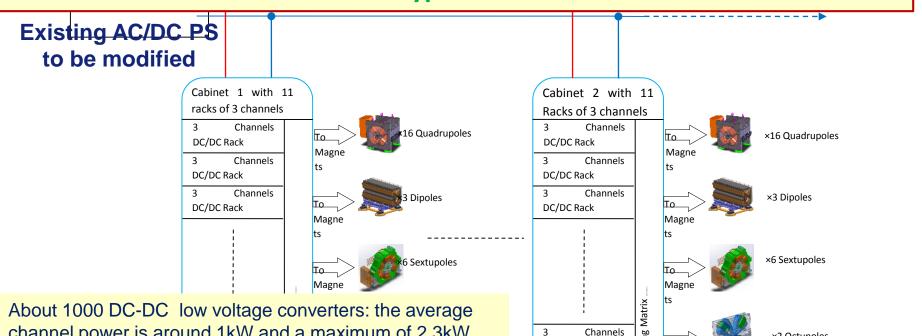
Crotch 1

0

Page 24

ESRF

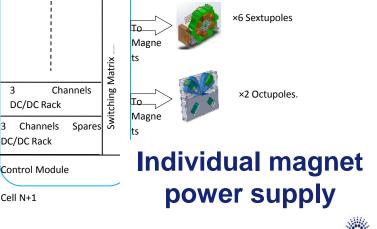
POWER SUPPLIES


360 V dc distribution network

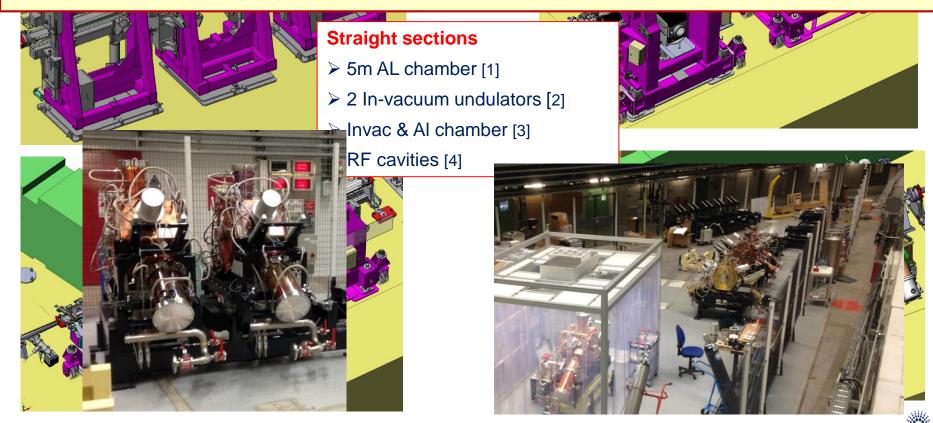
3

Cell N+1

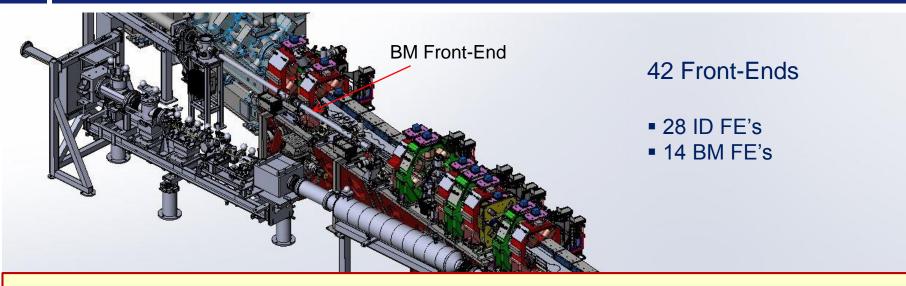
400V 17 Dulcos commo


Prototype received

channel power is around 1kW and a maximum of 2.3kW.


The stability requested will be 15ppm with a MTBF of more than 400 000 hours.

The integration in 32 cabinets will be designed with the Computer Services for redundancy and HOT-Swappability



Present Insertion Devices will be reused New BM devices in fabrication All RF cavities received and RF conditioned All RF-related contracts active

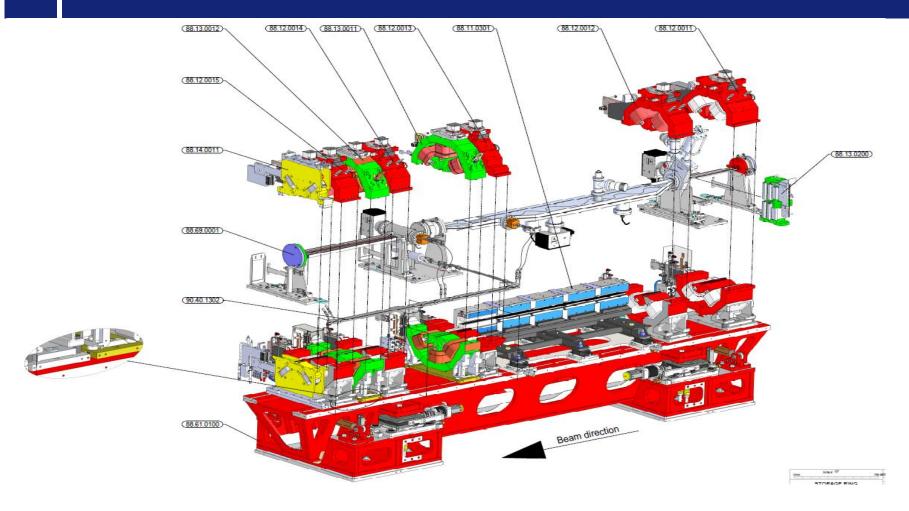
ESRF

FRONT-ENDS

All FE components in production, several batches received

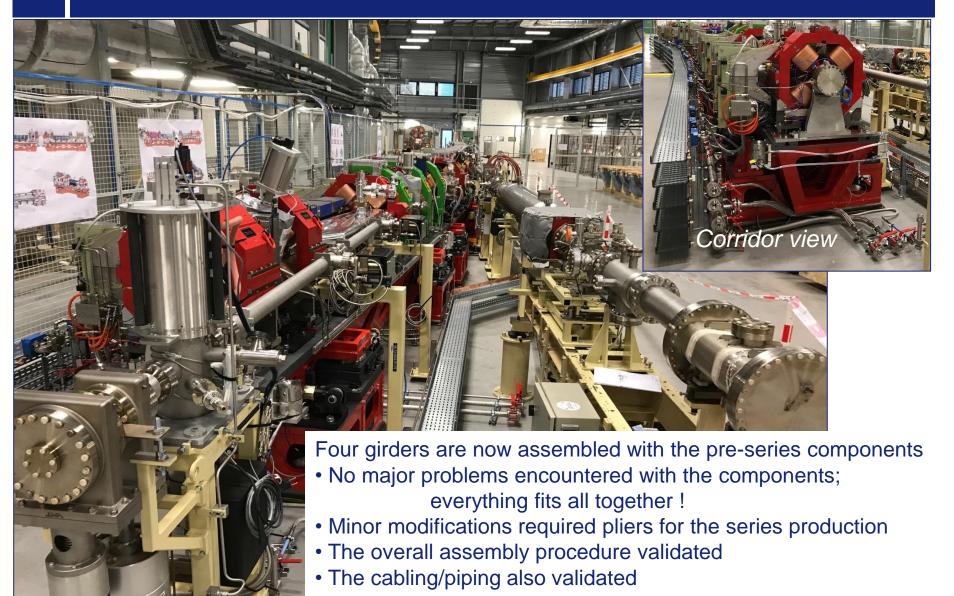
New Front-End design completed for :

- SR junction chambers
- BM and ID FE module1
- All FE components in production, several batches received

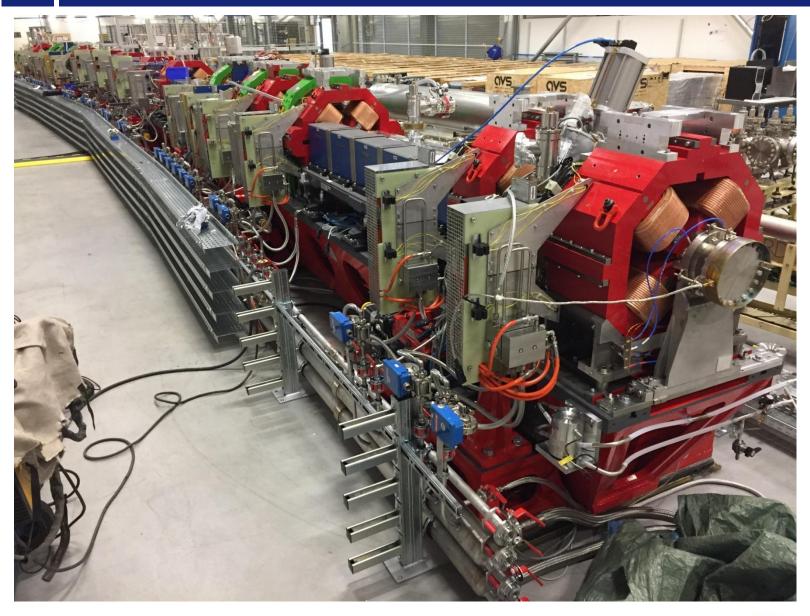

ID Front-End

FROM ASSEMBLY TO INSTALLATION

COMPLETE GIRDER DISASSEMBLED VIEW

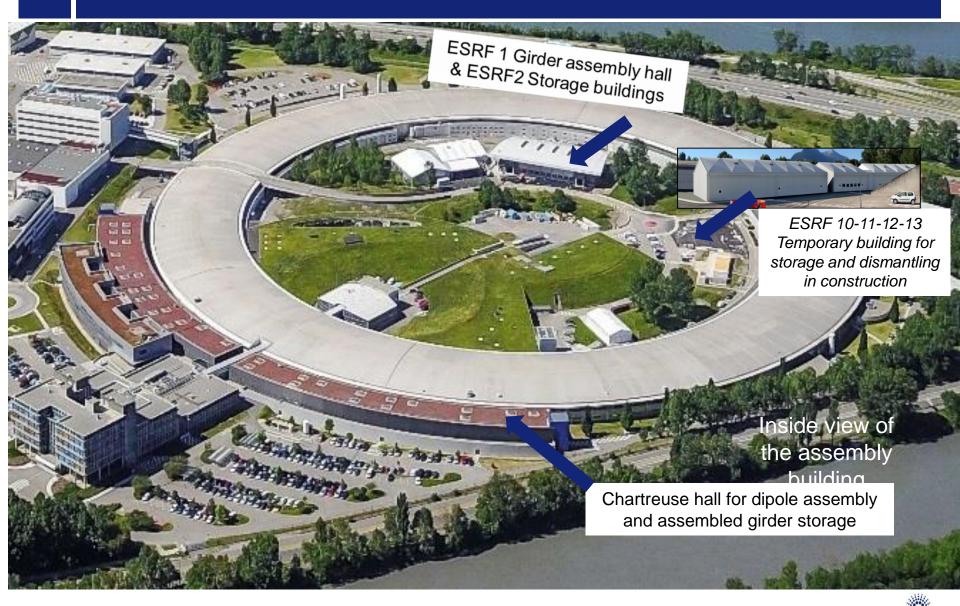

FULL CELL MOCKUP

FULL CELL MOCKUP



Page 31 ESLS Workshop, 20-22 November 2017, ESRF- Operation and Upgrade Status Jean-Luc Revol

The European Synchrotron


ESRF

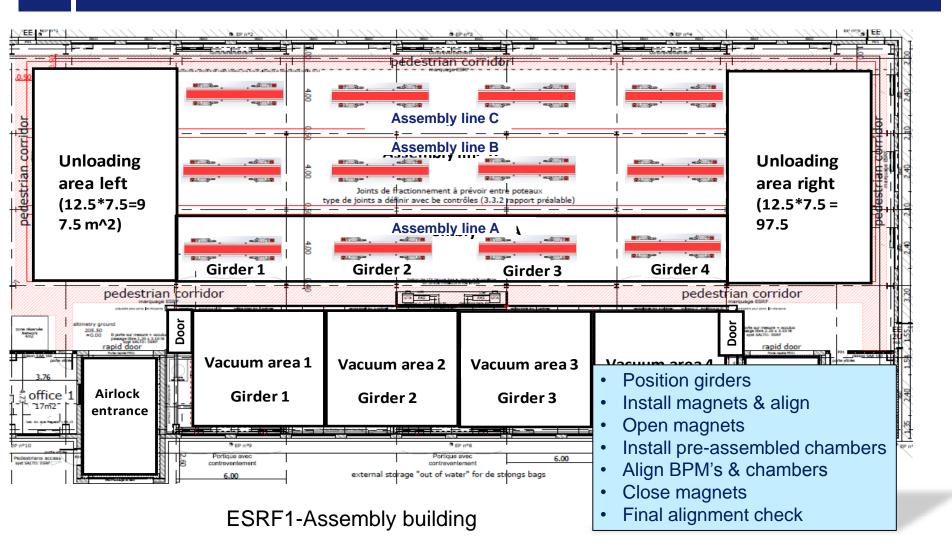
MOCK-UP: TUNNEL CORRIDOR VIEW



EBS BUILDINGS FOR THE ASSEMBLY AND INSTALLATION PHASE

ESRF01 – STORAGE AND ASSEMBLY BUILDING

The Assembly phase takes place during the Operation of the facility!



ESRF02A/B – STORAGE BUILDINGS

ASSEMBLY PLANNING – ESRF01 LAYOUT


ASSEMBLY STARTING DATE: GIRDERS ROLL IN ON OCTOBER 20, 2017

ASSEMBLY IN FULL SWING: MAGNETS & VACUUM

	2016 2017											20	18								201	19								202	0		
Planning	OND	JF	MA	V M J	J	A S	0	ND	J	F IV	ΛΑ	МJ	JA	s s	0	NC	J	F	MA	M	JJ	J A	s	0	N D	J	F	MA	. M	J J	Α	S (
User Service Mode (USM)																																	
Design, Procurement																																	
Production																																	
Assembly																																	
Dismantling																																	
Installation																																	
Machine Commissioning									-				_																				
Beamline Commissioning							(Gir	de	ra	2.5.5	ser	nh	lv	7																		
Friendly Users									T۲					- 7																			

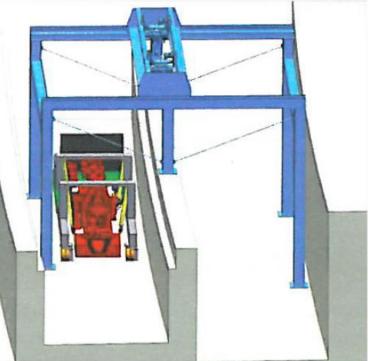
ESRF

INSTALLATION

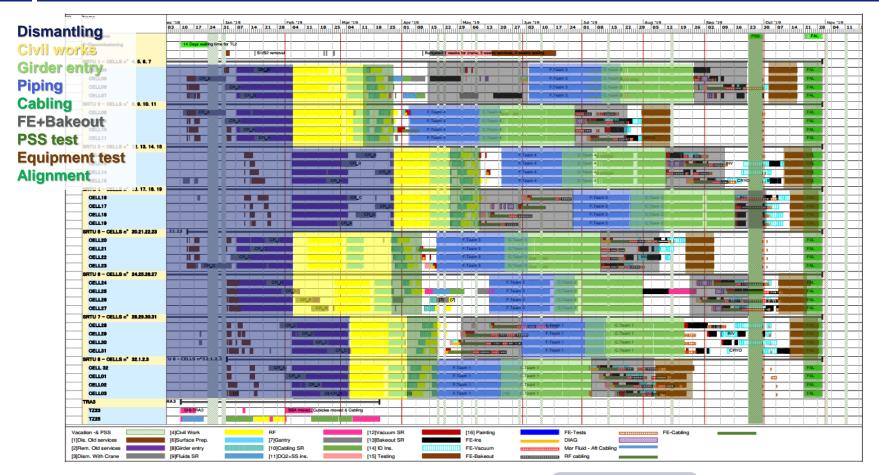
Normally access for ordinary maintenance is via the roof, using over-head cranes,

but

Assembled girders are too heavy for the cranes → Specific handling tools have been developed.



INSTALLATION


- The first girder transport module has been delivered to ESRF
- ✓ There will be four girder transport
- The girder transport modules will be used inside our buildings

- Dedicated transport module has been developed
- Dedicated gantry will be installed to pass over the tunnel wall

DISMANTLING + INSTALLATION PLANNING

	2016	5			2	201	7								2	01	8								2	01	9								2	020	D		
Planning	ON	DJ	F	MA	мΜ.	I I	Α	S	0	ND	r c	F	M	Α	МJ	J	Α	s	0	I D	J	F	м	Α	МJ	J	Α	s	0	V D	r c	F	M	Α	МJ	J	Α	S (V D
User Service Mode (USM)																																							
Design, Procurement																					ሐ;	~		~	n+l	; ,	2												
Production																					ΨΙ	21	Ш	aı	ntl	Ш	ıy												
Assembly																																							
Dismantling																									0	,													
Installation																									Q	8													
Machine Commissioning																																							
Beamline Commissioning																								1-	-4			4:	~~										
Friendly Users																									SI	d	Id	UI.	or										

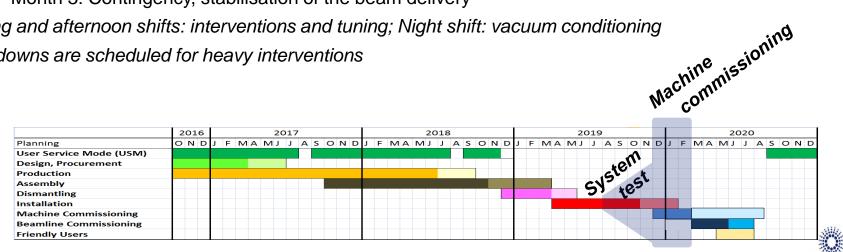
ESRF

STORAGE RING COMMISSIONING

System tests completed by 1 December 2019

- 2 weeks per cell (power supplies, low-level RF, vacuum front-ends, IDs)
- 1 week for Personal Safety System,
- 1 week Machine interlock, RF

Allocated time for electron beam commissioning: 3 months


Start: Monday December 2nd, 2019 → End: Sunday March 1st, 2020

Best case scenario: (risk mitigation and alternative scenarios not available now).

- Month 1: debugging of equipment and software, 1st turn, initial tuning at low current \geq
- Month 2: Current ramping, finer optics tuning \geq
- \geq Month 3: Contingency, stabilisation of the beam delivery

Morning and afternoon shifts: interventions and tuning; Night shift: vacuum conditioning

2 shutdowns are scheduled for heavy interventions

DRAFT OPERATION SCHEDULE 2020

Dec 2019	Jan 2020 Feb 2020	Mar 2020 Apr 2020	May 2020 Jun 2020	Jul 2020	Aug 2020	Sep 2020	Oct 2020	Nov 2020	Dec 2020
Sun 01 s s s	Wed 01 s s s Sat 01 M M			s Wed 01 B M C	Sat 01 B B C	Tue 01 M M M	Thu 01	Sun 01	Tue 01 M M M
Mon 02 F F C	Thu 02 s s s Sun 02 M M		Sat 02 B B C Tue 02 s s	s Thu 02 B B C	Sun 02 B B C	Wed 02	Fri 02	Mon 02	Wed 02
Tue 03 F F C	Fri03 s s s Mon 03 M M	C Tue 03 B M C Fri 03 B B C	Sun 03 B B C Wed 03 s M	M Fri 03 B B C	Mon 03 s s s	Thu 03	Sat 03	Tue 03 M M M	Thu 03
Wed 04 F F C	Sat04 s s s Tue04 M M		Mon 04 B M C Thu 04 M M		Tue 04 s s s	Fri 04	Sun 04	Wed 04	Fri 04
Thu 05 F F C	Sum 05 s s s Wed 05 M M		Tue 05 M B C Fri 05 M M		Wed 05 s s s	Sat 05	Mon 05	Thu 05	Sat 05
Fri06 F F C	Mon 06 s s s Thu 06 M M				Thu 06 s s s	Sun 06	Tue 06 M M M	Fri 06	Sun 06
Sat 07 F F C	Tue 07 s s Fri 07 M M		Thu 07 B B C Sun 07 M M		Fri07 s s s	Mon 07	Wed 07	Sat 07	Mon 07
Sun 08 F F C	Wed 08 s s Sat 08 M M		Fri 08 B B C Mon 08 M B		Sat 08 s s s	Tue 08 M M M	Thu 08	Sun 08	Tue 08 M M M
Mon 09 F F C	Thu 09 s M C Sun 09 M M		Sat 09 B B C Tue 09 B M		Sun 09 s s s	Wed 09	Fri 09	Mon 09	Wed 09
Tue 10 F F C	Fri 10 M M C Mon 10 s s		Sum 10 B B C Wed 10 B M		Mon 10 s s s	Thu 10	Sat 10	Tue 10 M M M	Thu 10
Wed 11 F F C			Mon 11 B M C Thu 11 B B		Tuell s s s	Fri 11	Sun 11	Wed 11	Fri 11
Thu 12 F F C	SatllMMC Tuells s Sum 12 MMC Wed 12 s s		Tue 12 M B C Fri 12 B B	C Sun 12 B B C	Wed 12 s s s	Sat 12	Mon 12	Thu 12	Sat 12
Fri 13 F F C	Mon 13 M M C Thu 13 s s		Wed 13 B M C Sat 13 B B	C Mon 13 B M C	Thul3 s s s	Sun 13	Tue 13	Fri 13	Sun 13
Sat 14 F F C	Tue 14 M M C Fri 14 s s		Thu 14 B B C Sun 14 B B	C Tue 14 M B C	Fri 14 s s s	Mon 14	Wed 14 s s s	Sat 14	Mon 14
Sun 15 F F C	Wed 15 M M C Sat 15 s s		Fri 15 B B C Mon 15 B M		Sat 15 s s s	Tue 15 M M M	Thu 15 s s s	Sun 15	Tue 15 M M M
Mon 16 F F C	Thu 16 M M C Sun 16 s s		s Sat 16 B B C Tue 16 M B		Sun 16 s s s	Wed 16 R	Frildsss	Mon 16	Wed 16
Tue 17 F F C	Fri 17 M M C Mon 17 s s		s Sun 17 B B C Wed 17 B M		Mon 17 s s s	Thu 17	Sat 17 s s s	Tue 17 M M M	Thu 17
Wed 18 F F C	Sat 18 M M C Tue 18 s M		5 Mon 18 B M C Thu 18 B B	C Sat 18 B B C	Tue 18 s s s	Fri 18	Sum 18 s s s	Wed 18	Fri 18
Thu 19 s s s	Sum 19 M M C Wed 19 M M		s Tue 19 M B C Fri 19 B B	C Sun 19 B B C	Wed 19 s s s	Sat 19	Mon 19 s s s	Thu 19	Sat 19
Fri20 s s s	Mon 20 M M C Thu 20 M M		5 Wed 20 B M C Sat 20 B B		Thu 20 s M M	Sun 20	Tue 20 s s s	Fri 20	Sun 20
Sat 21 5 5 5	Tue 21 M M C Fri 21 M M		5 Thu 21 B B C Sun 21 B B		Fri 21 M M M	Mon 21	Wed 21 s s s	Sat 21	Mon 21 s s s
Sun 22 s s s	Wed 22 M M C Sat 22 M M		s Fri 22 B B C Mon 22 B M		Sat 22 M M M	Tue 22 M M M	Thu 22 s s s	Sun 22	Tue 22 s s s
Mon 23 s s s	Thu 23 M M C Sun 23 M M		Sat 23 B B C Tue 23 M B		Sun 23 M M M	Wed 23	Fri 23 M M M	Mon 23	Wed 23 s s s
Tue 24 s s s	Fri 24 M M C Mon 24 M M		Sun 24 B B C Wed 24 B M		Mon 24 M M M	Thu 24	Sat 24 M M M	Tue 24 M M M	Thu 24 s s s
Wed 25 s s s	Sat 25 M M C Tue 25 M M		Mon 25 s s s Thu 25 B B	C Sat 25 B B C	Tue 25	Fri 25	Sun 25 M M M	Wed 25	Fri 25 s s s
Thu 26 s s s	Sun 26 M M C Wed 26 M M		Tue 26 s s s Fri 26 B B		Wed 26	Sat 26	Mon 26 M M M	Thu 26	Sat 26 s s s
Fri 27 s s s	Mon 27 M M C Thu 27 M M			C Mon 27 B M C	Thu 27	Sun 27	Tue 27	Fri 27	Sun 27 s s s
Sat 28 s s s	Tue 28 M M C Fri 28 M M			C Tue 28 M B C	Fri 28	Mon 28	Wed 28	Sat 28	Mon 28 s s s
Sun 29 s s s	Wed 29 M M C Sat 29 M M				Sat 29	Tue 29 M M M	Thu 29	Sun 29	Tue 29 s s s
Mon 30 s s s	Thu 30 M M C	Mon 30 B M C Thu 30 B B C			Sun 30	Wed 30			
Tue 31 s s s	Fri 31 M M C	Tue 31 M B C	Sun 31 s s s	Fri 31 B B C	Mon 31	wea 30	Sat 31	2404 20	The 21 c c c
10251 5 5 5	FII SI M M C	Tue ST M B C	300 31 5 5 5		MOI 51		381 51		100 51 5 5 5
From 1 Longon (2020 to 31 december 2020;								
From 1 January 2	1720 hours 215 shift	ls s Shutdown (249 shifts in	2017)		Shutdown activiti				-011.1
			*			es.			~10 ¹¹
	0 hours 0 shift 1856 hours 232 shift			wir	nter 19-20: February	one single pole and	d one 2 polor	0	:55
			•		-		a one 2 poies	ine 1	n ¹
			<u>ще</u>		April	All 2 poles installed	u Mad	M. M	1
	1384 hours 173 shift				May	All single pole inst	ашеа	3 ¹¹ ~0 ¹¹	missioning
	2200 hours 275 shift				Summer		26	6°	
	16 hours 2 shift				October		V	10	
	8784 hours 1098 shift	-			nter 20-21			•	
			17	2018		2019			
	Planning		JASONDJFMAN	JJASON	DJFMA	A J J A S O	NDJFMA	MJJAS	OND
	User Service Mode (USN	/1)							
	Design, Procurement								
	Production Assembly								
	Dismantling								
	Installation								
	Machine Commissioning								
	Beamline Commissionin								1000000
	Enternally at the sure								SAM .

ESRF

Friendly Users

CONCLUSION

EBS project running in parallel with ESRF operation

- No impact on user operation
- Continuation of the development (injector, top-up, cryo undulators,...) \geq

EBS project execution progression:

- \geq Engineering Design completed
- \geq Production of the ESRF-EBS components is in full swing
- The first cell (out of 32) called "MockUp" has been built \geq
- Serial components contracts will be exhausted over the next 10 months \geq
- Assembly has started on October 20th, 2017 and will last about 1 year \geq
- \geq Dismantling/Installation planning and organisation charts are finalised
- Storage Ring and Beamlines Commissioning phase is being finalised \geq At this stage, no major show stopper identified.

orage Ring and At thi																					1																		56	30	L			1	ს	se	<u>کا د</u>	5 P	o' v	'd' 90	¥. ۷	51	า	0	10
	2016				20	017	7	_										2	20:	18						T					2	202	19								-	-		2	02	0									
Planning	OND	JF	M	AI	ΛJ	J	Α	S	С	7 C	NI	Р	J	F	N	ЛА	۹ I	м.	J.	J	А	s	0	N	I C	J	F	ľ	v,	4	И.	J.	J	A	s	0	Ν	D	J	F	м	A	. ∿	ΛJ	J	4	A S	5 (0	Ν	D				
User Service Mode (USM)																																																							
Design, Procurement																																																							
Production																																																							
Assembly																																																							
Dismantling		1																																																					
Installation																																																							
Dismantling Installation Machine Commissioning Beamline Commissioning																																																						822	

MANY THANKS FOR YOUR ATTENTION

This presentation has been contributed to by many ESRF staff.

With special thanks to: JC Biasci, P Raimondi, D Einfeld, K Scheidt, J Chavanne, L Farvacque, S White, C Benabderrahmane, G LeBec, J Jacob, Q. Brioulet, P Renaud, S Liuzzo, JF Bouteille, ISDD engineering group, I Leconte, L Hardy