

Status of SOLARIS

Adriana I. Wawrzyniak

adriana.wawrzyniak@uj.edu.pl

Solaris National Synchrotron Radiation Centre Jagiellonian University Czerwone Maki 98 30-392 Kraków www.synchrotron.uj.edu.pl

On behalf of SOLARIS Team

- Facility Introduction
- Operation schedule
- Storage Ring Parameters
- Beam Stability
- Recent Failures
- Beamlines Status
- Future activities

SOLARIS

3rd generation light source facility built at the Jagiellonian University Campus in Krakow, Poland. The machine was constructed in 2015 thanks to the unique cooperation with MAXIV Laboratory in Lund, Sweden.

TIME SCHEDULE

April 2010 – project start (Team: 7 persons) January 2012 – start of the building construction (Team: 15 persons) May 2014 – building handover & machine installation (Team: 30 persons) May 2015 – End of installation and start of commissioning (Team: 40 persons) December 2015 – End of the project March 2016 – CERIC ERIC collaboration & operational funds for 5 years April 2016 - start of the UARPES beamline commissioning May 2016 - PHELIX beamline project approval and funded April 2017 – Start of the PEEM/XAS beamline commissioning (Team:50 persons) May 2017 – XMCD (MAXII I1011) beamline project funded

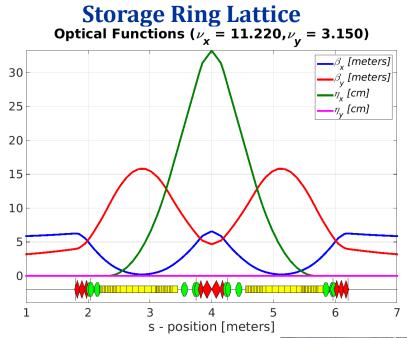
SOLARIS - LAYOUT

1.5GeV Storage ring
12 DBA Cells - 96 m circ.
Space for ID's (10 sections) ~ 3.5 m
10 straight sections for Ids
100 MHz RF system
300 MHz Landau Cavities
Injection dipole kicker
Ramping
In operation since May 2015

PHELIX

U-ARPES

600 MeV Linac with RF Thermionic Gun 6 accelerating structures combined in 3 units Accelerating gradient 20 MeV/m S-band – 2998.5 MHz 3 RF Units & SLED cavities In operation since Dec. 2014


XMCD

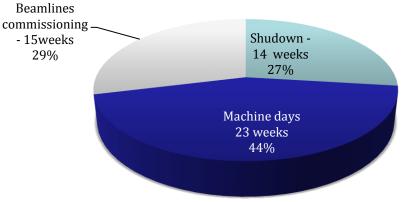
PEEM/XA

STORAGE RING

Electron energy	1.5 GeV
Design current	500 mA
Number of circulating bunches	32
Natural bunch length σ_z /w.	14.2 mm /60
Landau Cavities (LC)	mm
Natural emittance (bare	5.982 nmrad
lattice)	
Coupling	1%
Energy spread (bare lattice)	0.000745
Tunes ν _x , ν _y	11.22, 3.15
Natural chromaticities ξ_x , ξ_y	-22.96, -17.14
Corrected chromaticities ξ_x , ξ_y	+1, +1
Momentum compaction	3.055 x 10 ⁻³
Energy loss/turn	114.1 keV
Momentum acceptance	4%

MAXIV Facility, DDR, § 3, http://www.maxlab.lu.se/maxlab/max4/DDR_public

Optics design by S.C. Leemann - MAXIV

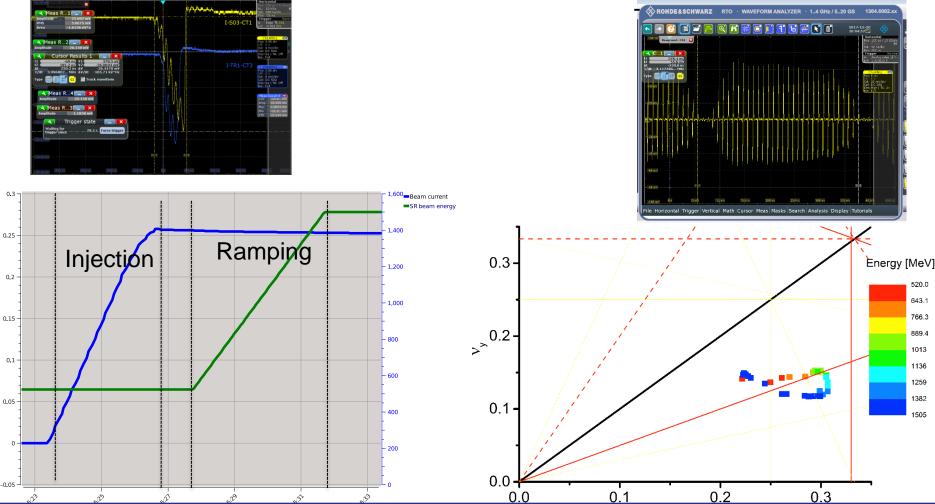

N KRAKOW

OPERATION CALENDAR AGIELLONIAN UNIVERSITY

			2017
Week			Operation mode
1	2017-01-02	2017-01-08	Shutdown
2	2017-01-09	2017-01-15	Shutdown
3	2017-01-16	2017-01-22	Machine dedicated time/start up
- 4	2017-01-23	2017-01-29	Machine dedicated time
5	2017-01-30	2017-02-05	Machine dedicated time
6	2017-02-06	2017-02-12	Machine dedicated time
7	2017-02-13	2017-02-19	Machine dedicated time
8	2017-02-20	2017-02-26	Machine dedicated time
9	2017-02-27	2017-03-05	Machine dedicated time
10	2017-03-06	2017-03-12	Machine dedicated time
11	2017-03-13	2017-03-19	Machine dedicated time
12	2017-03-20	2017-03-26	Machine dedicated time
13	2017-03-27	2017-04-02	Beamline commissioning
14	2017-04-03	2017-04-09	Beamline commissioning
15	2017-04-10	2017-04-16	Beamline commissioning
16	2017-04-17	2017-04-23	Beamline commissioning
17	2017-04-24	2017-04-23	Beamline commissioning
18	2017-05-01	2017-05-07	Beamline commissioning
10	2017-05-08	2017-05-14	Sbutdows
20	2017-05-08	2017-05-21	Sbutdowa
20	2017-05-22	2017-05-28	Machine dedicated time
21	2017-05-22	2017-05-28	Beamline commissioning
23	2017-05-25	2017-06-04	
23	2017-06-03	2017-06-11	Beamline complisioning Shutdown
25	2017-06-12	2017-06-18	
			Beamline complisioning
26	2017-06-26	2017-07-02	Beamline commissioning
27	2017-07-03	2017-07-09	Beamline commissioning
28	2017-07-10	2017-07-16	Beamline commissioning
29	2017-07-17	2017-07-23	Beamline commissioning
30	2017-07-24	2017-07-30	Shutdowa
31	2017-07-31	2017-08-06	Shutdown
32	2017-08-07	2017-08-13	Shutdown
33	2017-08-14	2017-08-20	Shutdown
34	2017-08-21	2017-08-27	Sbutdown.
35	2017-08-28	2017-09-03	Machine dedicated time/start up
36	2017-09-04	2017-09-10	Machine dedicated time
37	2017-09-11	2017-09-17	Beamline commissioning
3.8	2017-09-18	2017-09-24	Beamline commissioning
39	2017-09-25	2017-10-01	Beamline commissioning
40	2017-10-02	2017-10-08	Beamline commissioning
41	2017-10-09	2017-10-15	Beamline commissioning
42	2017-10-16	2017-10-22	Beamline commissioning
43	2017-10-23	2017-10-29	Sbutdown
44	2017-10-30	2017-11-05	Machine dedicated time
45	2017-11-06	2017-11-12	Beamline commissioning
46	2017-11-13	2017-11-19	Beamline commissioning
47	2017-11-20	2017-11-26	Beamline commissioning
4.8	2017-11-27	2017-12-03	Beamline commissioning
49	2017-12-04	2017-12-10	Beamline commissioning
50	2017-12-11	2017-12-17	Beamline commissioning
51	2017-12-18	2017-12-24	Shutdown
52	2017-12-25	2017-12-31	Shutdown,

OPERATION working hours: 40 h/ week (5 days / 8h)

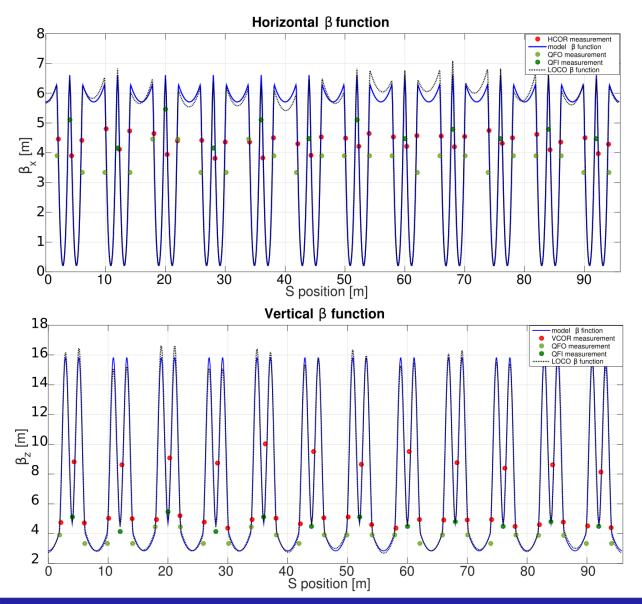
Forseen operation in 2017

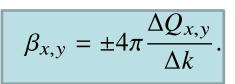

920 h for machine studies with high current up to 400 mA 600 h for beamlines (low current <100mA) ~6000 h of beam in the storage ring in decay mode - vacuum cleaning

jagiellonian university INJECTION & RAMPING 🗧

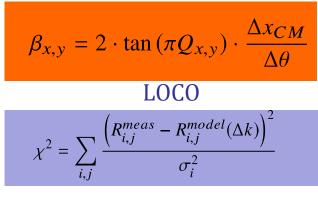
Filling pattern - 2bucket gap

Injection at the energy of 535 MeV with the repetition rate of 1 Hz. The injection of 200 mA can be done in 140 s and ramping - in 238s. Injection efficiency – 30%.


Bunch train length \sim 180 ns in the transfer line.

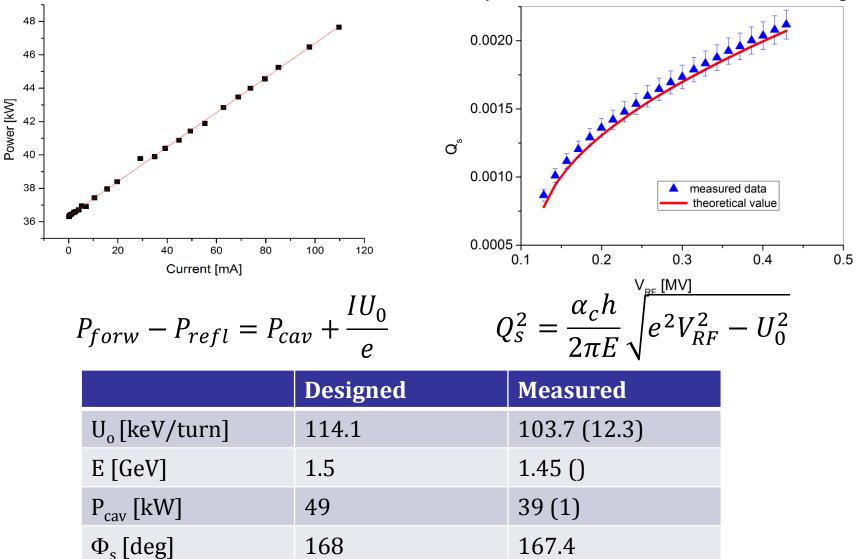


BETA FUNCTIONS



Quadrupole scan

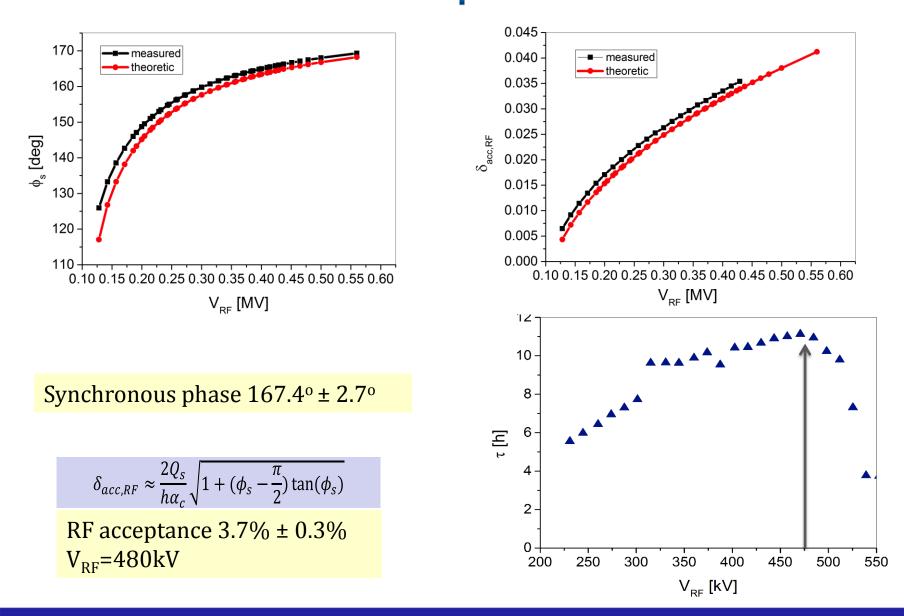
ORM method



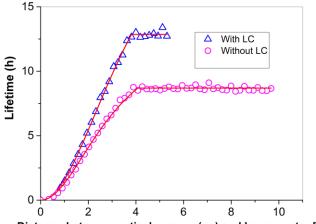
Method	Hor. beating	Vert. beating
QUAD	26.84%	33.52%
ORM	13.14%	23.49%
LOCO	16.45%	11.73%

The LOCO studies has revealed that the quad strength errors are up to 0.8 % for DBA2. The shunting of the magnets is planned. SYNCHROTRON TUNE SOLARIS

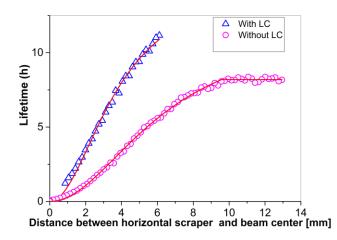
JAGIELLONIAN UNIVERSITY


Synchrotron tune vs. total RF voltage.

RF ACCEPTANCE



XXV ESLS Workshop, A.I. Wawrzyniak, 20-22.11.2017, Dortmund, Germany

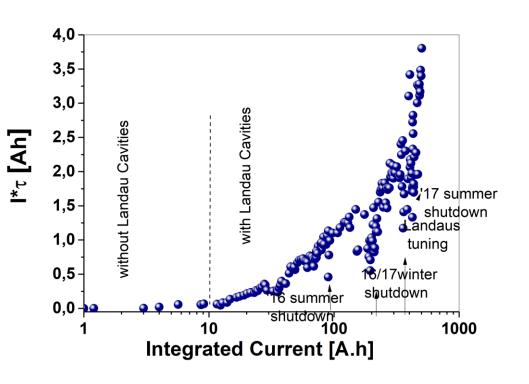


LIFETIME

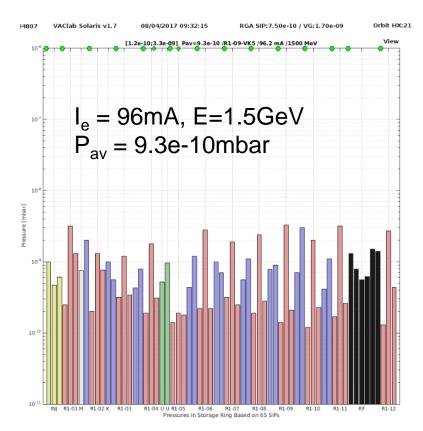
Distance between vertical scraper (up) and beam center [mm]

	without LC	with LC
Elastic scattering $\tau_{elastic}$	22.24	23.66 h
Inelastic scattering $\tau_{inelastic}$	37.45 h	43.57 h
Touschek lifetime τ_{Touschek}	21. 13 h	68.81 h
Total lifetime τ_{tot}	8.41 h	12.54 h

Physical acceptance for Solaris storage ring: $A_x(\delta) = 15.68 \text{ mm·mrad};$ $A_y(\delta) = 3.77 \text{ mm·mrad}$



CURRENT



The bam lifetime is still increasing with the accumulated beam dose.

The average pressure in the storage ring with 250 mA of a stored current at 1.5 GeV is $2.2 \cdot 10^{-9}$ mbar.

Maximum injected current over 600 mA. Maximum current at full energy over 400 mA.

ACHIEVED SR PARAMETERS

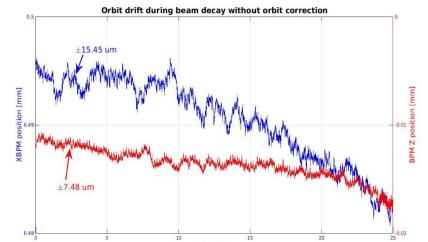
Parameter	Designed	Measured
Electron energy	1.5 GeV	1.45 ±0.5 GeV
Max. current	500 mA	409 mA
Number of circulating bunches	32	30
Natural bunch length σ_z /w. Landau Cavities	14.2 /60 mm	-
Natural emittance (bare lattice)	5.982 nmrad	-
Coupling	1 %	-
Energy spread (bare lattice)	0.000745	-
Tunes v _x , v _y	11.22, 3.15	11.22, 3.15
Natural chromaticities ξ_x , ξ_y	-22.96, -17.14	-
Corrected chromaticities ξ_x , ξ_y	+2,+2 ; +1, +1	+1.4, +1.6;+0.9,+0.9
Momentum compaction	3.055 x 10 ⁻³	-
Energy loss/turn	114.1 keV	103.7 ±12.3 keV
Momentum acceptance	4%	3.7± (0.3)%
Synchronous phase	168°	167.4° ± 2.7°
Synchrotron tune	0.00239	0.00228
Physical acceptance h/v	18/4 mmrad	15.68/3.77 mmrad
Total lifetime	13 h	8 h

NEXT GOALS

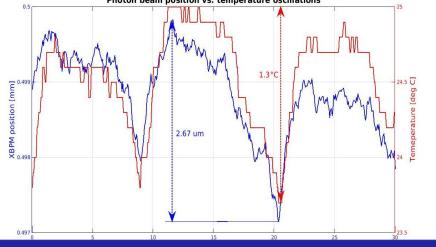
Linac and Transfer Line

- ✓ Emittance and energy spread measurements
- ✓ Optics adjustments for injection optimisation
- Chopper commissioning [ongoing]
- ✓ Magnets settings optimisation at nominal energy after full conditioning and SLED tuning

Storage Ring


- $\checkmark\,$ Shunting the magnets based on LOCO
- ✓ Beam based alignment (BBA)
- ✓ Beam stability studies
- $\checkmark\,$ Beam dynamics with insertion devices studies
- $\checkmark\,$ Nonlinear beam dynamics studies with pinger
- ✓ FOFB impelmentation fast correctors procured, PS specification under preapration
- ✓ Diagnostic beamlimes installation and emittance measurements
- ✓ Instabilities studies

BEAM STABILITY

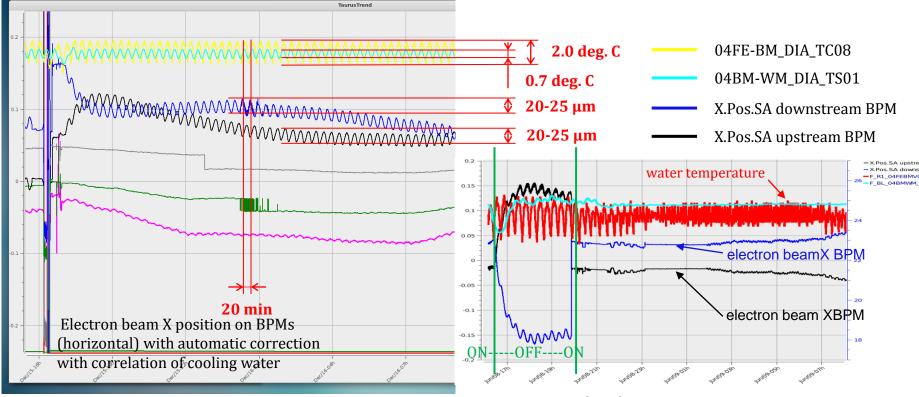


The vertical position drift of electron (red) and photon (blue) beam monitored over 25h without orbit correction.

Temperature oscillations in the range of 1.5-2.0 °C in the storage ring have impact on beam stabilty.

The temperature (red) and the photon beam oscillations (blue) monitored over 30 min with applied orbit correction.

BEAM STABILITY

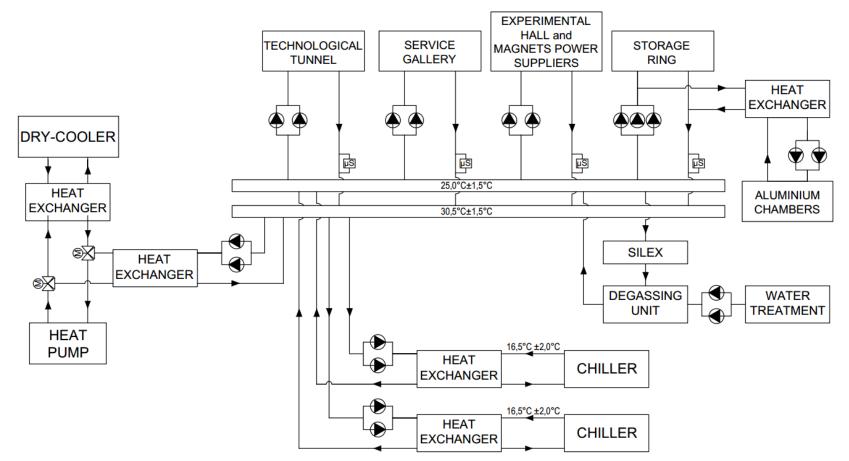

Beam drift in Storage Ring

By the end of 2016, beam diagnostics reported on the observed electron beam oscillations in the Storage Ring.

- 1. Amplitude of vibration
 - a) <u>with no</u> automatic correction:
 - b) <u>with</u> automatic correction:
- 2. Oscillation period:
- 3. Place of measurement:

20-25 μm 8-15 μm 20 min BPMs &XBPMs

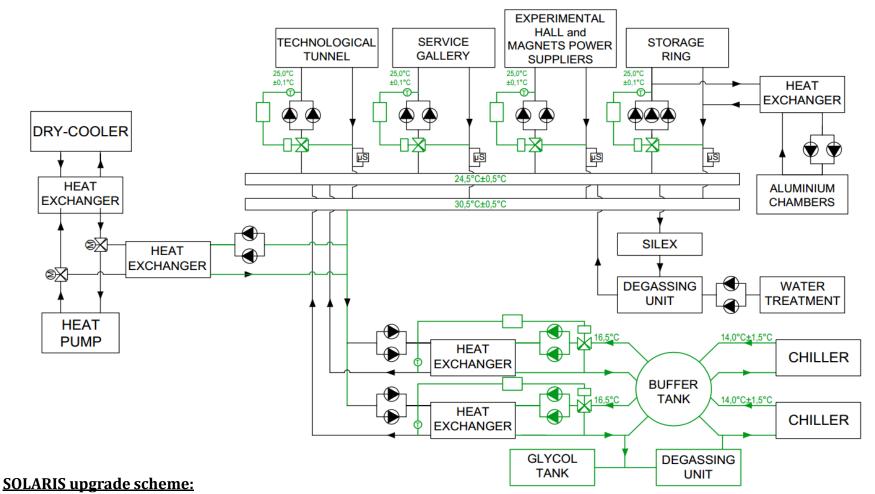
The direct cause of the oscillation of the electron beam and the photon beam in the Storage Ring is the oscillation of the cooling water temperature in main backbone.


Time period: 16 h, correction ON-OFF-ON

SOLUTION

Upgrade of the scheme

SOLARIS current scheme:


- 1. Stability of the cooling source: +/- 2.0 K
- 2. Temperature control accuracy: +/- 1.5 K

SOLUTION

Upgrade of the scheme

- 1. Stable cooling source: +/- 0.5 K realized by additional glycol buffer tank (~6000 l) and three-way valves on the glycol side
- 2. Temperature control accuracy: +/- 0.1 K realized by three-way valves on the demi water side
- 3. Industry automation

XXV ESLS Workshop, A.I. Wawrzyniak, 20-22.11.2017, Dortmund, Germany

Modulators:

• First broken IGBT in the high voltage switch unit. Equipment after warranty.

100MHz cavities

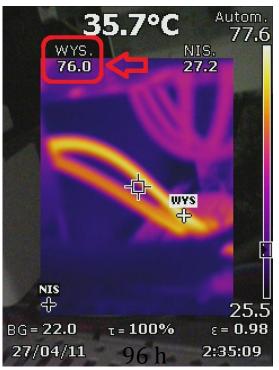
• Leakage up to 1.0e-7 mbar*l/s at ceramic of pick-ups (already 4 pieces). New designed pick-up's without ceramics have been delivered under warranty.

Rhode & Schwarz signal generator SMA100A (Master Oscillator for linac)

 Synchronization error on 10MHz reference, repaired under warranty -> OCXO oven problem

Overheating of 50W 20dB RF attenuators from Landau cavities pick-up

- Not detectable by LLRF because of 450MHz low pass filter in series
- Expected few watts, value from 100MHz 3GHz spectrum measurements during commissioning at certain Landau tuning position
- Investigation on-going, >150mA beam current needed

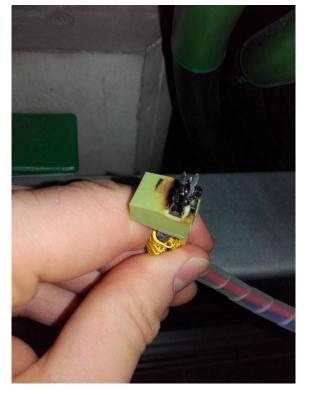

FAILURES OF STORAGE RING PS

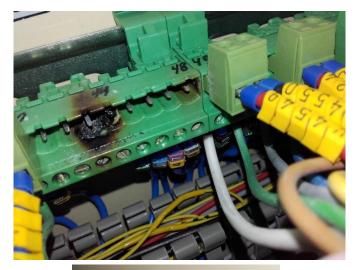
Breakdown of PS switch

PS overheating due to water flow limitation

Failure of 5V inner power supply for analog part of control board

In total 220 h of downtime due to main PS problems




RSITY Corrector magnets connetors failures

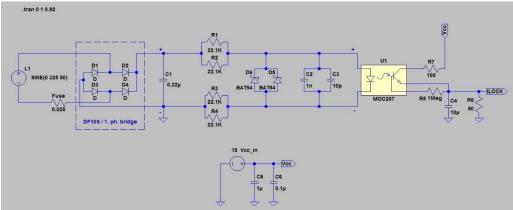
Problems with connectors for corrector magnets

Downtime: 6 h

Actions: - We are going to replace the connectors with solid soldered cables during winter shutdown.

jagiellonian university Most serious failures

Pinger failure



Actions:

- After Solaris' diagnose BINP provided us new phase detectors and replacement for other burned electronics elements;
- We are working on new improved phase detector for the Pinger;

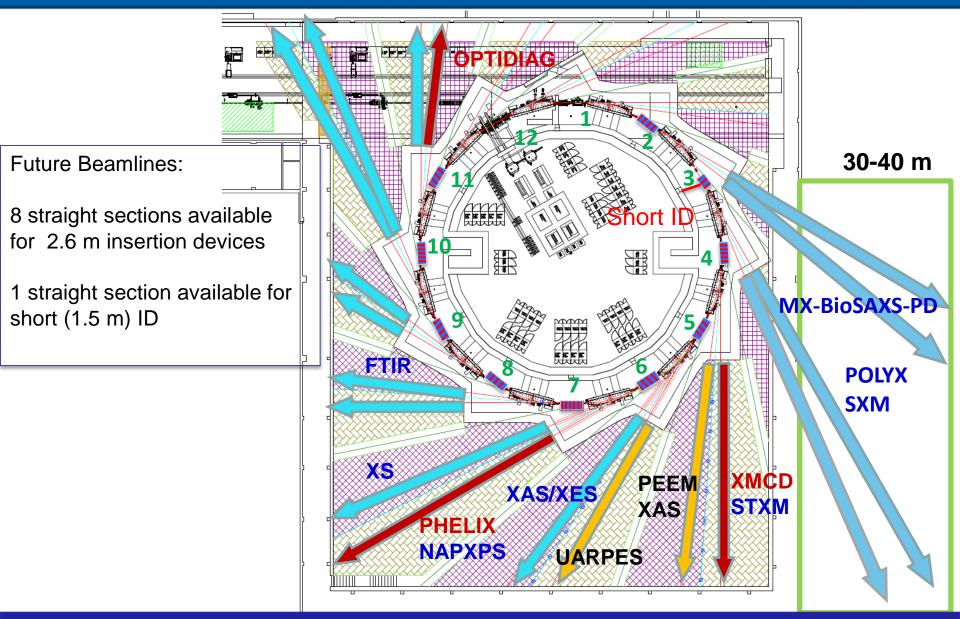
- IGBT section (most sensitive part of the kicker and pinger) was investigated after the failure and as for now everything looks good.

XAS/PEEM Beamline commissioning and operation

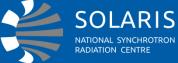
First light at the beamline components 11th April 2017. Beamline commissioning will take approximately up to May 2018 Phase 1: Alignment of main beamline optics to obtain focused beam at exit slits, degassing of optics Phase 2: Fine tuning of the main beamline optics, energy calibration, test with XAS Phase 3: Friendly User's experiments at XAS, refocusing optics alignment, test with PEEM After successful preliminary experiments the beamline can be opened to Users (05.2018)

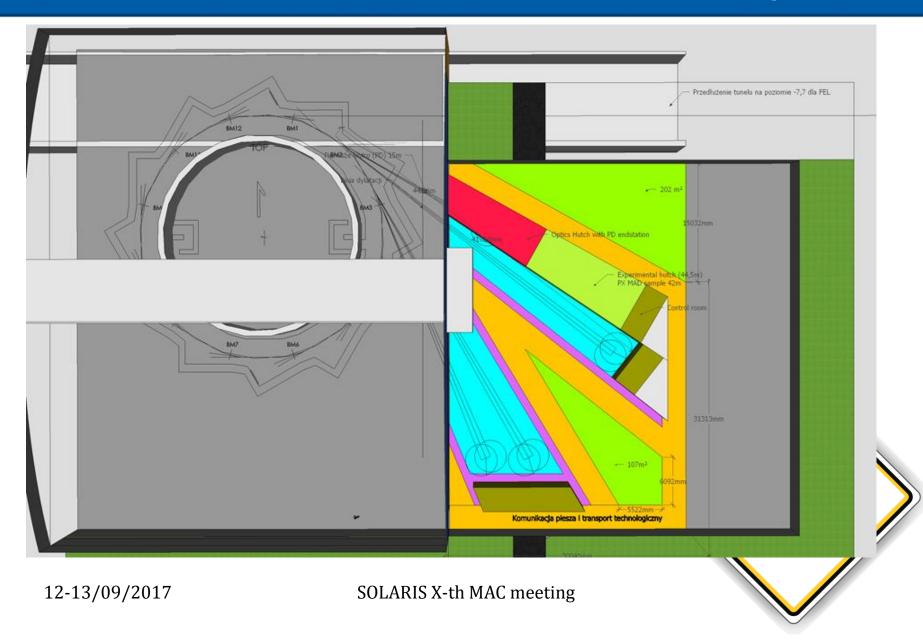
UARPES Beamline

April 2016 - start of commissioning,


Sept.-Nov. 2016 carbon deposits found on optical elements. Fluorocarbons found in the MONO and MIRRORs chambers

Jan- Jul. 2017 ELETTRA accepts warranty claims and carry out further diagnistics. Optical elements are recoated with Au layers on Cr adhesion layer.


Aug.-Nov. 2017 The beamline mechanisms are redelivered and installed. The beamline is precisely realigned The sections MIRROR1, MIRROR2, MIRROR3, and MONO are baked and the UHV restored. Mid of Nov. 2017 – Commissioning of UARPES beamline restarted


JAGIELLONIAN UNIVERSITY FUTURE BEAMLINES

JAGIELLONIAN UNIVERSITY BUILDING EXPANSION

- ★ A good performance of the Solaris stoarge ring has been achieved.
- Tuning of the Landau cavities improved the Touschek lifetime by factor of 3 and cured some instabilities.
- Temperature oscillations in the range of 1.5°C in the storage ring have impact on beam stability and the improvement of the main cooling system is under development.
- ✤ The UARPES and XAS/PEEM beamlines commissioning is ongoing.
- Forseen user operation will start in September 2018
- * Next two **beamlines PHELIX and XMCD** are funded and will be installed by **mid of 2019**
- Future operation
 - Preparation for 24/7 operation 3 shifts; compensation for weekends, nights and on call duties – have to be sorted within Jagiellonian University
 - Operators -10 persons -> existing personnel plus hiring new people (Acc. Phys.);
 - Key Spare parts planning the budget for next 2-3 years
 - Tools and procedures for reliable operation

Thank you for the attention!

