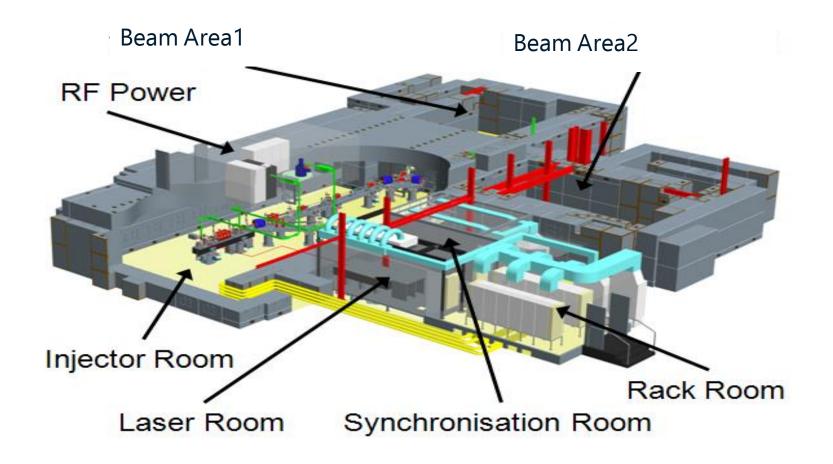


VELA- Photoinjector Facility and CLARA- FEL test facility at Daresbury Laboratory

Deepa Angal-Kalinin


XXV ESLS Workshop, 21st-22nd November 2017, Dortmund, Germany

Timeline

September'11	Construction of VELA - Initiated following the capital investment announcement of 2.5M£ in DSIC from BIS.			
April'13	First electrons (ALPHA-X gun on loan from Strathclyde)			
July'13-Nov'14	Industrial and academic user experiments. Number of changes to the machine. Machine Development and characterisation.			
Dec'14-March'15	VELA shutdown for re-configuration of shielding for CLARA Front End.			
April'15-Oct'15	Machine Development and characterisation. Industrial and academic user experiments.			
Nov'15-March'17	VELA shutdown for CLARA Front End installation. 10 Hz gun on CLARA line and 400 Hz gun on VELA line.			
March'17-Nov'17	Resolved number of issues. Pulse stretcher on PI laser. Accelerated beam from CLARA Phase 1 last week.			

VELA

Versatile Electron Linear Accelerator (VELA) is a high performance, S-band RF photoinjector facility capable of delivering a high quality electron beam to two beam areas. It is located in the old outer hall of SRS at Daresbury Laboratory.

Location

VELA

VELA Specification					
Beam Energy	4 - 6 MeV				
Bunch Charge	10 - 250 pC				
Bunch length ($\sigma_{t,rms}$)	1 – 10 ps				
Normalised emittance	1 - 4 µm				
Beam size (σ _{x,y,rms})	0.5 - 5 mm				
Energy spread ($\sigma_{e,rms}$)	1 – 5 %				
Bunch repetition rate	1 – 10 Hz				

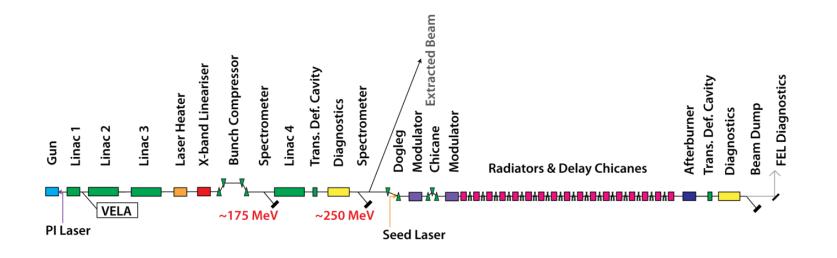
*Not all parameters achievable simultaneously

Notes:

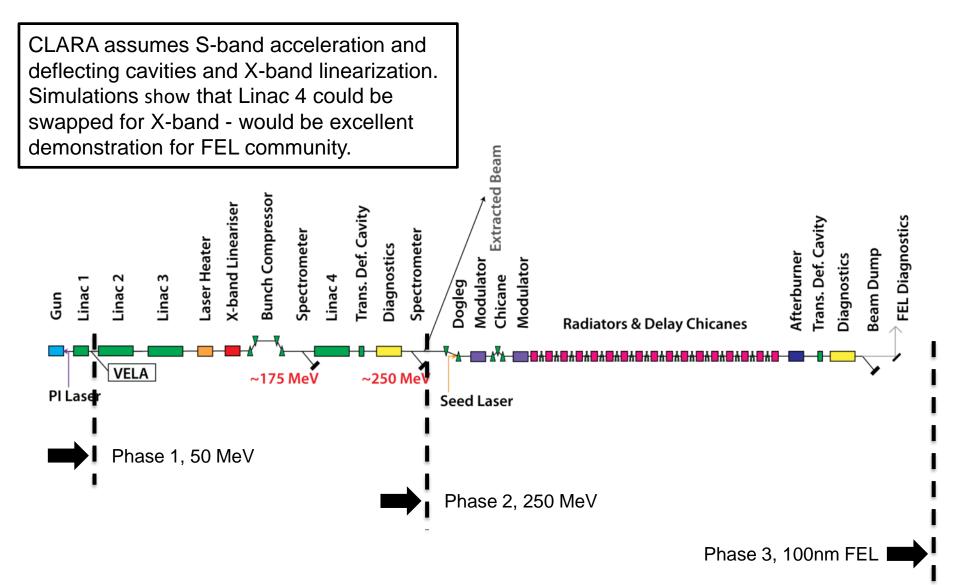
VELA gun is from Strathclyde (ALPHA-X)
 Max rep rate is 10 Hz but laser and RF capable of 400 Hz
 400 Hz gun will be commissioned in 2018.

Compact Linear Accelerator for Research and Applications

An upgrade of the existing VELA Photoinjector Facility at Daresbury Laboratory to a 250MeV Free-Electron Laser Test Facility


Proof-of-principle demonstrations of novel FEL concepts and development of future accelerator technologies

Emphasis on Stability, Synchronisation and Ultra-short Pulse Generation

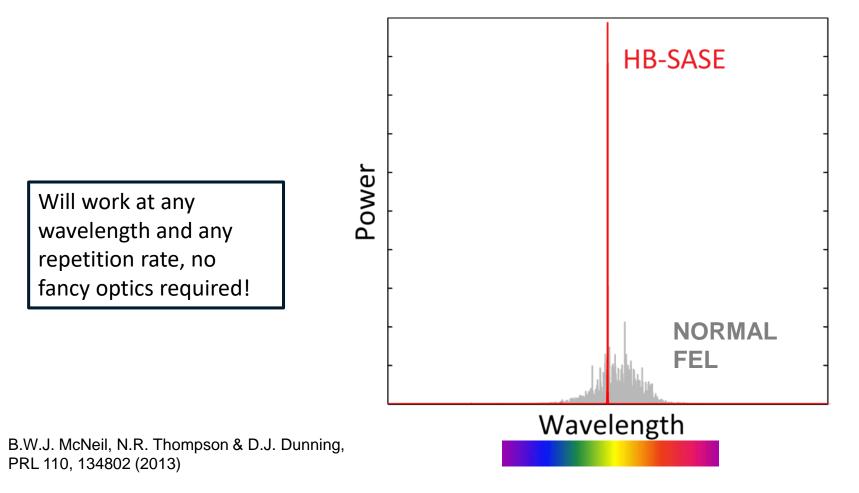


CLARA

- CLARA is a purpose built dedicated flexible FEL Test Facility
- CLARA is a scaled down version of an X-ray FEL containing all of the key technical components, where all lessons learnt can be directly applied to any future UK XFEL.
- The key objectives are:
 - To develop new methods for improving the quality of the light output from FELs
 - Prove new technologies
 - Develop the UK skill base
 - Lower the total cost of a UK XFEL
 - Lower the risks associated with UK XFEL.

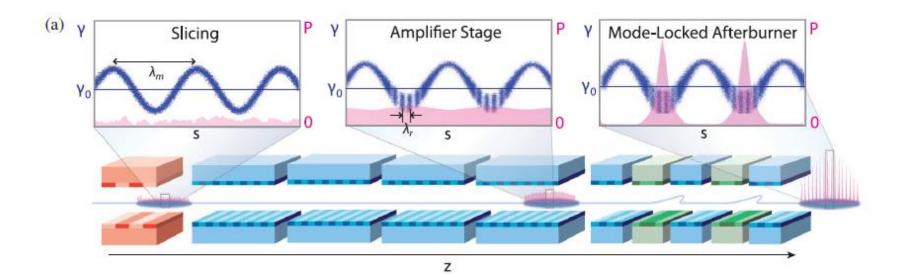
CLARA Schematic & Project Phases

CLARA Layout



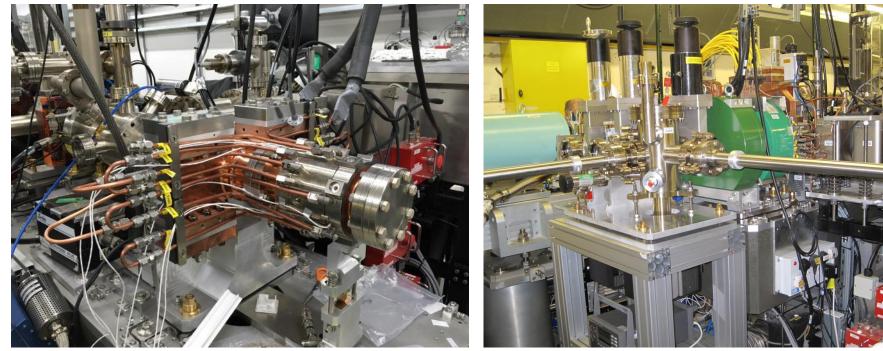
Summary of Operating Modes

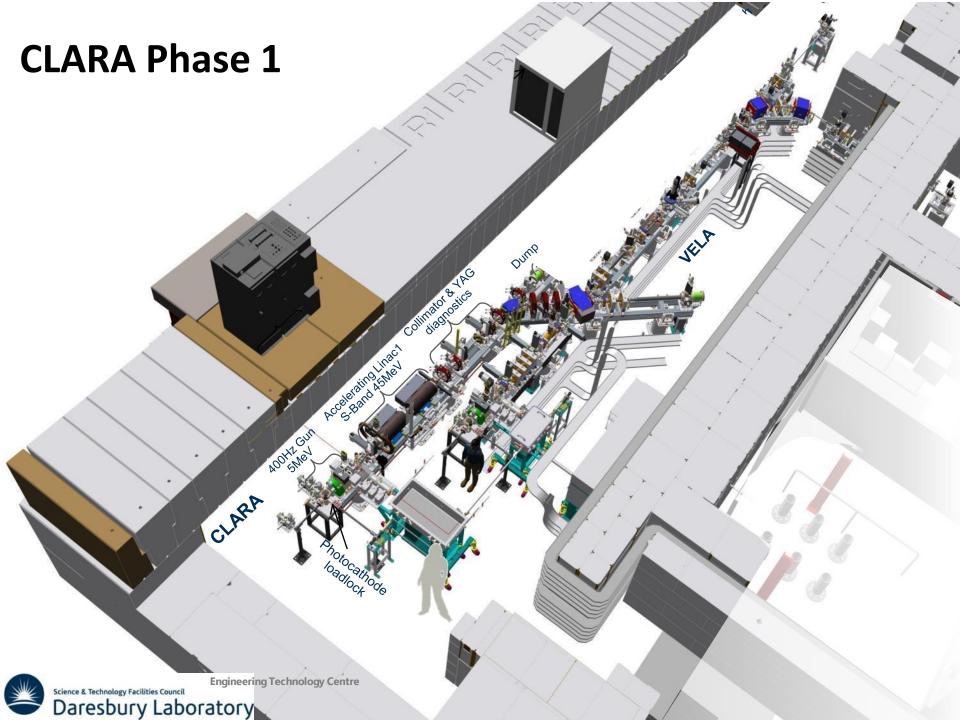
MODE	FLAT – Seeded HG	ULTRASHORT – SSS	SHORT – HB-SASE	LONG – ML
Energy	240 MeV	240 MeV	150— 240 MeV	150 – 240 MeV
Pulse Duration	250fs flat region	50 —35 fs FWHM	585 fs FWHM	1.875 ps FWHM
Charge	250 pC	25—50 pC	250 pC	250 pC
Peak Current	400 A	500 — 1500 A	400 A	125 A
Norm Emittance (mm-mrad)	0.5 (Target) 1.0 (Max)	1.0 (Target) 1.5 (Max)	<mark>0.5 (Target)</mark> 1.0 (Max)	0.5 (Target) 0.8 (Max)
RMS Energy Spread (keV)	25 (Target) 100 (Max)	100 (Target) 150 (Max)	<mark>25 (Target)</mark> 120 (Max)	25 (Target) 75 (Max)
Purpose	 800nm Seeding and Harmonic Generation 	 Single Spike SASE (+ mode- locked single spike SASE) 	 100nm saturation Schemes only requiring spectral characterisation, Highest harmonic upconversion potential Shortest pulse durations in absolute terms. 	 266nm schemes requiring long wavelength modulation of the pulse energy (Mode- Locking, Mode- Locked Afterburner, Slice + Taper).


What will CLARA be able to do?

- Example 1: Reducing the FEL output bandwidth
- Prove that a new idea called **HB-SASE** actually works
 - Could then build it in from the start of the UK XFEL

What will CLARA be able to do?


- Example 2: Generate few cycle pulses
- Prove that a new idea called **Mode-locked Afterburner** actually works
 - Could then build it in from the start of the UK XFEL
 - Able to probe ever faster processes (down to *sub-attosecond*)



D.J. Dunning, B.W.J. McNeil, & N.R. Thompson PRL 110, 104801 (2013)

What will CLARA be able to do?

- Example 3: Prove performance of 400 Hz Photoinjector Prototype
- 1.5 cell S-band gun with RF probe
- Maximum gradient of 120 MV/m @100 Hz, or 100 MV/m @400 Hz
- 10kW cooling capacity
- Vacuum load lock system for easy replacement of cathode (e.g. Cu, CsTe, ...)
- RF conditioning and beam characterisation with different cathodes planned in 2018.

VELA and CLARA

400 Hz S-band RF gun with photocathode exchange system installed on VELA line

0-

Se .

The Electron Hall

- CLARA is cited within the Electron Hall at Daresbury Laboratory
- The Electron Hall was not fit for purpose so has been completely refurbished
 - For beam stability we need the temperature of the facility to be very stable
 - Previously the temperature within the building varied by at least 15 °C over the year
 - Now the measured variation is less than ±1 °C within the building
 - Within the shielded enclosure we have measured better than ±0.05 °C, as required

CLARA Status

• Phase 1, 50 MeV

- Installation complete.
- Commissioning of 10 Hz gun and Linac1 underway.
- First accelerated beam ((~50 MeV) from CLARA Front End last week.
- Beam characterisation, machine development and exploitation planned in 2018.
- HRRG gun conditioning and characterisation on VELA line planned.

• Phase 2, 250 MeV

- Procurement of equipment is ongoing.
- Assembly offline of all modules during 17/18.
- All shielding assembled by Spring 2018.
- Phase 3, 100nm FEL Test Facility
 - Detailed design stage now.
 - Undulator tender documents being prepared.

Lessons Learnt

- Photoinjector
 - − RF power meter measurements \leftarrow → beam momentum
 - Dark current $\leftarrow \rightarrow$ surface finish and processing of photocathode
 - Short Laser Pulse (control over longitudinal and transverse profiles was part of the long term development programme for CLARA) → damage to laser transport optics components
 - Pulse stretcher installed
 - Presently using Gaussian profile in longitudinal and transverse, will need flat top to reach CLARA emittance target <0.5 um (1 um max).
 - Precision on cathode dimensions
- Delays in procurement and delivery of some critical components.
- Not meeting technical specifications of few components.
- Unexpected issues, e.g. screwing of IR detectors after completion of waveguide assembly.

Summary

- CLARA is a purpose built dedicated flexible FEL Test Facility at the heart of the FEL R&D programme
 - To develop new methods for improving the quality of the light output from FELs
 - Prove new technologies
 - Develop the UK skill base
 - Lower the financial and technical risks associated with UK XFEL.
 - We are keen to work with international partners on all aspects of accelerator and FEL technology
- CLARA Status
 - Phase 1 now being commissioned
 - Procurement of remaining items for CLARA is ongoing
 - Electron Hall refurbishment is complete
 - First lasing in 2021 (subject to funding timeline)

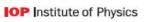
Thanks to everyone who is contributing to the CLARA project

Science & Technology Facilities Council

The CLARA Team

https://www.cockcroft.ac.uk/events/ICPA/

INTELLIGENT CONTROLS FOR PARTICLE ACCELERATORS 30-31 JAN 2018 DARESBURY LABORATORY


Where does the UK accelerator community want to be in 5-10 years in terms of controls?

To achieve their ultimate performance, the next generation of particle accelerators require advances in controls systems and feedback. Proposed techniques to realise this include; machine learning through neural networks, generatic algorithms, artificial intelligence, and adaptive controls. This workshop aims to discuss the state of the art and explore promising approaches for future development.

> Organising Committee James Henderson, Lancaster University. Peter Williams, STFC. Duncan Scott, STFC.

WWW.COCKCROFT.AC.UK/EVENTS/ICPA

