Linear Collider Detector Project HCAL Construction

Ronan McGovern Diego Perini Wolfgang Klempt

Key Questions

- 1. Can a tungsten HCAL detector be designed with acceptable:
 - 1. Physics performance?
 - 2. Stress levels and deformation?
 - 3. Cost?
- 2. How can such a detector be analysed from a structural point of view?
- 3. What are the key structural, assembly and manufacturing issues associated with a tungsten HCAL?

Design Approach

- 1. Establishment of HCAL specifications
 - Physicist's requirements
 - Known physical limits (e.g. superconductor diameter)
- 2. Determination of Tungsten plate availability and mechanical behaviour
- 3. Initial design of HCAL geometry
- 4. Structural analysis of HCAL

HCAL Specifications

Detector Dimensions

- Inner Diameter: 2800 mm
- Outer Diameter: 5800 mm
- Detector Length: 3500 mm
- Total W radial thickness: 700 mm

Layer Composition

- Gap: 1 mm
- Scintillator thickness: 7 mm
- W plate thickness: 12 mm
- Number of Layers: ≈ 60

Tungsten Plate Characteristics I

- Mechanical properties of pure W and alloys
 - Density of 17-19 g/cm³
 - Young's modulus of 350-400 GPa
 - Elongation of less than 5% (close to 0 for pure W)
- Cost
 - Introducing holes/cutouts in plates and subsequent stress concentrations remain an issue
 - Such cutouts are essential in current designs

Tungsten Plate Characteristics II Maximum W plate size

Metal	Tungsten INERMET 176	
Young's Modulus	350	GPa
Poisson's Ratio	0.3	-
Thickness	0.012	m
Density	17600	kg/m ³
Plate Length	1	m

Calculate:

- 1. Max Stress
- 2. Deflection at Centre

Maximum W plate size – Results

Ronan McGovern, Diego Perini & Wolfgang

Tungsten Plate – Conclusions

- Use of plates 3.5 m long, 1 m wide and 12 mm is theoretically possible.
- At present, plates available are:
 - 12 mm thick
 - 1.2 m wide
 - 1.6 m long
- It is hoped that improvements in manufacturing processes will make longer plates (3.5 m) available.
- Bolting and overlapping of plates may allow smaller plates to be used.

Geometry Choice and Analysis Outline

- 18 symetrical sectors
- 3 "boxes" per sector
- Plates bolted together using washers to provide gap for scintillators

LatticeSectorBox

Analysis Outline

- How should one support the HCAL?
- What is the global detector deformation?
- What are the max stresses in the <u>steel lattice</u>?
 Where do they occur?
- What are the max stresses in the <u>bolts</u> and <u>tungsten plates</u>?

- Where do they occur?

3-Step Approach

Model is almost 2D – apart from bolts

Solution:

- 1. Model the entire detector (18 sectors) in 2D
 - a. Determine optimal support position
 - b. Determine global deformation
 - c. Determine forces acting on each sector
- 2. Adjust and validate 2D model by comparing a 2D and a 3D sector
- 3. Apply forces obtained from 2D model to a 3D sector to analyse the 3D state of stress in a sector

✓ Weight of Tungsten included➢ Rigidity of Tungsten neglected

- Consider different support configurations at 20° intervals
- 2. Apply earth gravity
- 3. Calculate deformation for each support configuration

Observe deformation at top, middle and bottom points

- Optimal Support Position is at 3 and 9 o'clock
- Note: For this configuration:
 - Top sectors compression
 - Force passes by face to face contact between sectors
 - Bottom sectors traction
 - Force passes solely through bolts in tension

Ronan McGovern, Diego Perini & Wolfgang Klempt

Global Deformation Analysis

Global Deformation Analysis

Detector Masses & Supports

- HCAL Spec.
 - Fixed outer supports at 3 & 9 o'clock positions
 - W mass: 612 tons
 - SS mass: 29 tons
 - Scintillator mass: 26 tons
 - 7 mm layers (1300 kg/m³)
 - Total HCAL mass: 667 tons
- ECAL Spec.
 - 75 tons
 - Distributed and attached to inner faces of HCAL

Detector Plates

- Tungsten Plates
 - 21 plates per sector
 - Will be increased to full 66 for final simulation
 - 12 mm per plate (scaled to 36 mm for sim.)
 - 8 mm for scintillators & gap (scaled to 24 mm for sim.)

Steel Lattice Dimensions I

- Diagonal thickness: 10 mm
 - Maximise circumferential scintillator coverage

!! Caution necessary during assembly due to deformation and high stress levels

Steel Lattice Dimensions I

Detector Steel Lattice Thickness II

- Provide sufficient thickness for bolting and clamping
 - Outer Thickness: 40 mm
 - Inter-sector connection
 - Intermediate Thickness: 20 mm
 - Intra-sector connection
 - Perpendicular connection
 - Inner Thickness: 40 mm
 - Inter-sector connection

Note: Welding is also a possibility –More likely for building a sector than for joining sectors together

Global Deformation Distribution

Ronan McGovern, Diego Perini & Wolfgang Klempt

Local Deformation Example

Global Stress

Local Stress

2D deformation - conclusions

• Error sources:

Underestimated deformation

- Use of seven 36 mm plates rather than twenty-two 12 mm plates for simulation (factor of 2 error)
- Use of 2D bolts (infinite depth) rather than 3D bolts (factor of 2 error)
- Neglecting of plate slipping due to manufacture tolerances (unknown effect)
- Overestimated deformation
 - No contact between edge of W plates and steel lattice
 - No face-face contact between adjacent sectors
 - Both errors unknown but favourable

Conclusion: Global deformation will be determined by manufacturing tolerances

2D stress - conclusions

- Error sources:
 - Underestimated stress levels
 - Use of seven 36 mm plates rather than twenty-two 12 mm plates for simulation
 - Use of 2D bolts (infinite depth) rather than 3D bolts
 - 3D stresses should be extrapolated
 - Overestimated deformation
 - No contact between edge of W plates and steel lattice
 - Expected to greatly reduce stresses in plate bolts
 - No face-face contact between adjacent sectors
 - Expected to greatly reduce stresses in sector bolts

Conclusion: 3D model is necessary to obtain stress information

2D model validation with 3D

Validation of 2D with 3D

• 2-Dimensional

• 3-Dimensional

Key Difference: 2D boltsWe wish to compare the rigidity of each sector

Validation of 2D with 3D - test

• 2-Dimensional

• 3-Dimensional

Horizontal position Support from the left-hand side Measure max deformation and stress

Ronan McGovern, Diego Perini & Wolfgang Klempt

Validation of 2D with 3D - Deformation

• 2-Dimensional

• 3-Dimensional

Max Deformation 0.5 mm

Max Deformation 0.9 mm

Both deform in a similar manner

Ronan McGovern, Diego Perini & Wolfgang Klempt

3D deformation

Validation of 2D with 3D - Conclusions

- Max 3D deformation is approximately double 2D
 - This suggests that the rigidity of a 2D sector is close to 3D
 - Having found a global HCAL deformation of 0.6 mm, we can be satisfied that in the 3D case, this will not surpass 5 mm
- Stress
 - Further simulations are required to determine the stress concentration in passing from 2D to 3D.

Important Considerations I

- Rails on HCAL exterior
 - Room should be left so that rails fit within the 5800 mm diameter imposed
 - Design of such rails is not trivial
 - The possibility of supporting the detector from each end should also be considered
- Depending on the thickness of W required, a composite layer of steel and tungsten could be introduced to reduce cost
 - Structural benefits associated with such a composite layers are <u>not</u> considerable

Important Considerations II

- In order to benefit from the high rigidity of W, adjacent sectors must be joined together in as secure a manner as possible
 - Novel bolting, clamping, interlocking or welding solutions need to be further examined and developed
- Later on in the analysis, earthquake effects corresponding to a lateral force of 0.3g should be analysed.