Linear Collider Detector Project HCAL Construction

Ronan McGovern Diego Perini Wolfgang Klempt

Key Questions

- 1. Can a tungsten HCAL detector be designed with acceptable:
	- 1. Physics performance?
	- 2. Stress levels and deformation?
	- 3. Cost?
- 2. How can such a detector be analysed from a structural point of view?
- 3. What are the key structural, assembly and manufacturing issues associated with a tungsten HCAL?

Design Approach

- 1. Establishment of HCAL specifications
	- Physicist's requirements
	- Known physical limits (e.g. superconductor diameter)
- 2. Determination of Tungsten plate availability and mechanical behaviour
- 3. Initial design of HCAL geometry
- 4. Structural analysis of HCAL

HCAL Specifications

Detector Dimensions

- Inner Diameter: 2800 mm
- Outer Diameter: 5800 mm
- Detector Length: 3500 mm
- Total W radial thickness: 700 mm

Layer Composition

- Gap: 1 mm
- Scintillator thickness: 7 mm
- W plate thickness: 12 mm
- Number of Layers: ≈ 60

Tungsten Plate Characteristics I

- Mechanical properties of pure W and alloys
	- Density of 17-19 g/cm³
	- Young's modulus of 350-400 GPa
	- Elongation of less than 5% (close to 0 for pure W)
- Cost
	- Introducing holes/cutouts in plates and subsequent stress concentrations remain an issue
		- Such cutouts are essential in current designs

Tungsten Plate Characteristics II Maximum W plate size

Calculate:

- 1. Max Stress
- 2. Deflection at Centre

Maximum W plate size – Results

8/28/2009 Ronan McGovern, Diego Perini & Wolfgang Richard Wongang
Klempt 7

Tungsten Plate – Conclusions

- Use of plates 3.5 m long, 1 m wide and 12 mm is theoretically possible.
- At present, plates available are:
	- 12 mm thick
	- 1.2 m wide
	- -1.6 m long
- It is hoped that improvements in manufacturing processes will make longer plates (3.5 m) available.
- Bolting and overlapping of plates may allow smaller plates to be used.

Geometry Choice and Analysis Outline

- 18 symetrical sectors
- 3 "boxes" per sector
- Plates bolted together using washers to provide gap for scintillators

Exactice ≻Sector \blacktriangleright Box

Analysis Outline

- How should one support the HCAL?
- What is the global detector deformation?
- What are the max stresses in the steel lattice? – Where do they occur?
- What are the max stresses in the bolts and tungsten plates?

– Where do they occur?

3-Step Approach

Model is almost 2D – apart from bolts

Solution:

- 1. Model the entire detector (18 sectors) in 2D
	- a. Determine optimal support position
	- b. Determine global deformation
	- c. Determine forces acting on each sector
- 2. Adjust and validate 2D model by comparing a 2D and a 3D sector
- 3. Apply forces obtained from 2D model to a 3D sector to analyse the 3D state of stress in a sector

 \checkmark Weight of Tungsten included \triangleright Rigidity of Tungsten neglected

- 1. Consider different support configurations at 20° intervals
- 2. Apply earth gravity
- 3. Calculate deformation for each support configuration

Observe deformation at top, middle and bottom points

- Optimal Support Position is at 3 and 9 o'clock
- Note: For this configuration:
	- Top sectors compression
		- Force passes by face to face contact between sectors
	- Bottom sectors traction
		- Force passes solely through bolts in tension

8/28/2009 Ronan McGovern, Diego Perini & Wolfgang Report that wongang
Klempt 16

Global Deformation Analysis

Global Deformation Analysis

Detector Masses & Supports

- HCAL Spec.
	- Fixed outer supports at 3 & 9 o'clock positions
	- W mass: 612 tons
	- SS mass: 29 tons
	- Scintillator mass: 26 tons
		- 7 mm layers (1300 kg/m³)
	- Total HCAL mass: 667 tons
- ECAL Spec.
	- 75 tons
	- Distributed and attached to inner faces of HCAL

Detector Plates

- Tungsten Plates
	- 21 plates per sector
		- Will be increased to full 66 for final simulation
	- 12 mm per plate (scaled to 36 mm for sim.)
	- 8 mm for scintillators & gap (scaled to 24 mm for sim.)

Steel Lattice Dimensions I

- Diagonal thickness: 10 mm
	- Maximise circumferential scintillator coverage

‼ Caution necessary during assembly due to deformation and high stress levels

Steel Lattice Dimensions I

8/28/2009 Roman McGovern, Diego Perini & Wolfgang
Klempt Riempt 22
Klempt

Detector Steel Lattice Thickness II

- Provide sufficient thickness for bolting and clamping
	- Outer Thickness: 40 mm
		- Inter-sector connection
	- Intermediate Thickness: 20 mm
		- Intra-sector connection
		- Perpendicular connection
	- Inner Thickness: 40 mm
		- Inter-sector connection

Note: Welding is also a possibility –More likely for building a sector than for joining sectors together

Global Deformation Distribution

8/28/2009 Ronan McGovern, Diego Perini & Wolfgang Riempt 24

Local Deformation Example

Global Stress

Local Stress

2D deformation - conclusions

• Error sources:

– Underestimated deformation

- Use of seven 36 mm plates rather than twenty-two 12 mm plates for simulation (factor of 2 error)
- Use of 2D bolts (infinite depth) rather than 3D bolts (factor of 2 error)
- Neglecting of plate slipping due to manufacture tolerances (unknown effect)
- Overestimated deformation
	- No contact between edge of W plates and steel lattice
	- No face-face contact between adjacent sectors
	- \clubsuit Both errors unknown but favourable

\Box Conclusion: Global deformation will be determined by manufacturing tolerances

2D stress - conclusions

- Error sources:
	- Underestimated stress levels
		- Use of seven 36 mm plates rather than twenty-two 12 mm plates for simulation
		- Use of 2D bolts (infinite depth) rather than 3D bolts
			- 3D stresses should be extrapolated
	- Overestimated deformation
		- No contact between edge of W plates and steel lattice
			- Expected to greatly reduce stresses in plate bolts
		- No face-face contact between adjacent sectors
			- Expected to greatly reduce stresses in sector bolts

 \Box Conclusion: 3D model is necessary to obtain stress information

2D model validation with 3D

Validation of 2D with 3D

• 2-Dimensional

• 3-Dimensional

***** Key Difference: 2D bolts \triangleright We wish to compare the rigidity of each sector

Validation of 2D with 3D - test

• 2-Dimensional

• 3-Dimensional

*****Horizontal position *****Support from the left-hand side vMeasure max deformation and stress

8/28/2009 Ronan McGovern, Diego Perini & Wolfgang Extends to the company of the second state of the second state

Validation of 2D with 3D - Deformation

• 2-Dimensional

• 3-Dimensional

Max Deformation 0.5 mm

❖ Both deform in a similar manner

8/28/2009 Ronan McGovern, Diego Perini & Wolfgang Riempt 33
Klempt

3D deformation

Validation of 2D with 3D - Conclusions

- Max 3D deformation is approximately double 2D
	- This suggests that the rigidity of a 2D sector is close to 3D
	- Having found a global HCAL deformation of 0.6 mm, we can be satisfied that in the 3D case, this will not surpass 5 mm
- Stress
	- Further simulations are required to determine the stress concentration in passing from 2D to 3D.

Important Considerations I

- Rails on HCAL exterior
	- Room should be left so that rails fit within the 5800 mm diameter imposed
	- Design of such rails is not trivial
	- The possibility of supporting the detector from each end should also be considered
- Depending on the thickness of W required, a composite layer of steel and tungsten could be introduced to reduce cost
	- Structural benefits associated with such a composite layers are not considerable

Important Considerations II

- In order to benefit from the high rigidity of W, adjacent sectors must be joined together in as secure a manner as possible
	- Novel bolting, clamping, interlocking or welding solutions need to be further examined and developed
- Later on in the analysis, earthquake effects corresponding to a lateral force of 0.3g should be analysed.