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Motivation
Hard partons: produced early and probe the full QGP history
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“Heavy vs. light flavor puzzle”™: is AE > AE > AE > AE,, still right?
“Rpp VS. V, puzzle”: can we describe R,, and v, simultaneously?
Goal: fully understand heavy and light parton dynamics within a
unified theoretical/numerical framework
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A Linear Boltzmann Transport Model

Boltzmann equation for parton “1” distribution:

p1-O0fi(z1,p1) = BrC | f1]

The collision term: transition rate from p, to p,-k

Cliil= [ @k [w + EDAG +B) - v EA )

Elastic Scattering (2->2 process)




reeen) ; Ksz//

l - : wRg
A Linearized Boltzmann Transport Model

Scattering rate:

. d3py d*ps d*py
i) = [ kv = o8 [ oo [ aode |
12—>34(p1) /d kw12—>34<p17k) 2E1 (27T>32E2 (27T)32E3 (27T)32E4
x Fo(B2) |1 fa(i — B)| |1 fa(@o + B)| Sa(s, 1)
X (277)45(4) (p1 +p2 —p3 — p4)|/\/l12—>34|2

In model calculation: B
| |= = gluon
1. Use total rate I' = Z-Fi to | |[—— u/d/s quark E =30 GeV 1
. — i 8[|+ + - ¢ quark T = 300 MeV
determine the probability of o L= bavark
elastic scattering P = 'At S 6 line: semi-analytical e
/lo- symbol: MC simulation o i
4
\Y

2. Use branching ratios I';/I" to
determine the scattering channel

3. Use the differential rate to
sample the p space of the two
outgoing partons

AE.

o.. from our MC simulation agrees with the semi-analytical result.



A Linearized Boltzmann Transport Model

NV
Inelastic Scattering (2->2+n process)
Average gluon number in At:
dN,

NNE.T.t.At) = At [ dzdk?
S0 28y 250 /x L dzdk? dt

Spectrum of medium-induced gluon (higher-twist formalism):
dN, 20,Ca P(x) . k2 4 o ft—1;
o S111
dzdk? dt ki L\ k2 + 22 M2 27/
[ Guo and Wang (2000), Majumder (2012); Zhang, Wang and Wang (2004) ]
q: dpi/dt of quark/gluon due to 2->2 scatterings

Splitting time of radiated gluon: 75 = 2Exz(1 — z)/(k1 +2°M?)
(1—12)(2 -2z + z?)

Splitting functions:  La—ag = p ;
2(1 — x + x2)3
Fo—g9 = 77 (1 [Py e

g->gg not included - slight effect on single HM PRC 93 (2016), 024912



A Linearized Boltzmann Transport Model
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Number n of radiated gluons during At — Poisson distribution:

P(n) =

Probability of inelastic scattering during At: Py =1— et

In model calculation:
1.Calculate (IV,)and thus P,
2.1f gluon radiation happens,
sample n from P(n)

3.Sample E and p of gluons using
the differential spectrum
4.Assume 2->2 first and adjust E
and p of the 2+n final partons

together to guarantee E-p
conservation of 2->2+n process

n!

< Eg > (GeV)

100

80

WNg)" (v,

line: semi-analytical
symbol: MC-simulation

I s
Ng)
I T J
| |=— = gluon ﬁ{_
u/d/s quark E=30GeV /
-+ + cquark T = 300 MeV & i
L |- =— - b quark / .

<E,> from our MC simulation agrees with the semi-analytical result.
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Elastic vs. Inelastic Energy Loss

Divide scattering probability of jet parton into two regions:

1. Pure elastic scattering without radiated gluons: P. (1 — Piner)
2. Inelastic scattering: Pinel

Total probability: Piot = Pei + Pinel — Po1Pinel

16 T T T T T T
charm: 2 ->2

In model calculation:

1.Use P,..to determine whether 12'_.___. e
the jet parton scatter with the R
thermal medium

2.I1f so, we then determine I
whether this scattering is pure AL , .
elastic or inelastic

3.Simulate the 2->2 or 2->2+n
process

Einit =30 GeV 3 - ¢
sl T =300 MeV . il

< AE > (GeV)

HQ energy loss due to elastic and inelastic processes are comparable
at early time, but is dominated by the inelastic process at large t.



Hadronization

Heavy Flavor: fragmentation + HQ-thermal recombination

 Most high momentum heavy quarks fragment into heavy
mesons: use PYTHIA 6.4

 Most low momentum heavy quarks hadronize to heavy mesons
via recombination (coalescence) mechanism

[ SC, Luo, Qin and Wang, Phys. Rev. C94 (2016) 014909 ]

Light flavor: jet fragmentation + jet-jet recombination

e Contribution from the bulk matter and jet-thermal
recombination will be included in our future effort

~ [ Han, Fries and Ko, Phys. Rev. C93 (2016) 045207 ]




A Y.<
o2

Hadronization of Heavy Quarks

Two-particle recombination:

— | d3pd 55 — 51 —
d3p / ne P2, &ps far (1, 02)0(Pm — Py — P2)

1

B, Distribution of the it kind of particle

Light parton: thermal in the I.r.f of the hydro cell
Heavy quark: the distribution at T, after LBT evolution

fur (71, 72)  Probability for two particles to combine

W 3 G- r r
YD = g [ e T o+ D) (- )
F =7 — 7 ' Variables on the R.H.S. are
i 1 o defined in the c.m. frame of
1= E| + Eé( R 0o the two-particle system.
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| Hadronization of Heavy Quarks M
. i i
Wigner function: fyy (7,q) = gM/d3r’e_7’q'7° s (T + 5)@\4(?— 5)
1 - .
F=F - = (ELF, — E'5)) defined in the rest frame

of the produced meson

g,,: color-spin degeneracy of the produced meson
®,,: meson wave function — approximated by S.H.O.

Averaging over the position space leads to
3 2 2
SN

u: reduced mass of the 2-particle system
w: S.H.O frequency — related meson charge radius (parameter free)
3 1

2w (M1 + me2)(Q1 + Q2)

Can be generalized to 3-particle recombination (baryon)

<T?\4>ch =
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Hadronization of Heavy Quarks

0.8 - | T T T T T T
¢ -> any hadron
— — b -> any hadron|

» = - ¢ ->D meson
* ==+ b->B meson

Use f W to calculate P, (p,q) for all channels (D/BAZZ Q) at T,
Three regions: recombination to D/B mesons, recombination to
other hadrons, and fragmentation

In model calculation: in the l.r.f of the freeze-out hypersurface,
determine which region each HQ belongs to, and then use either
recombination model or Pythia simulation to obtain D/B mesons
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Framework Overview
(Parton Evolution inside the QGP)

¢ Generation of QGP medium: viscous hydro from OSU (2+1 D) or
LBL-CCNU (3+1 D) group

e |[nitialization of hard partons: MC-Glauber for position space and
PQCD calculation for momentum space (PDF: CTEQ5+EPS09)

e Simulation of parton evolution: the Boltzmann transport model in
the local rest frame of the medium

e Hadronization: fragmentation + recombination model

e Hadronic rescattering: TOt included [ref: Phys. Rev. C92 (2015)]
« ‘

|==> outside the medium
(below T), converted
into hadrons
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Heavy vs. Light Hadron Suppression

+ Au-Au 200 GeV

ﬁ Pb-Pb 2.76 TeV |
1 l 1

0-5%

0-10%

Pb-Pb 5.02 TeV |

L L I L
10 20 0

pr (GeV)

25 50 75 0

Pr (GeV)

Pr (GeV)

25 50 75 100

K\T\(/ﬂ

u/d/s are slightly more
suppressed than c quark, g is
significantly more suppressed

Due to different fragmentation
function (harder for c than for
u/d/s), it from light quark has
similar R,, to D, i from gluon
is still more suppressed

Final 7t is dominated by
contribution from quark jet at
small Vs, , but is dominated by
gluon jet at large Vs,
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in 200 GeV Au-Au Collisions
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Simultaneous Description of Dand T R, ,
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Simultaneous Description of Dand T R, ,
in 2.76 TeV Pb-Pb Collisions
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Simultaneous Description of D and Tt R,
in 5.02 TeV Pb-Pb Collisions
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With a delicate treatment of heavy and light parton in-medium
evolution and their hadronization, one may provide reasonable

K\T\(/ﬁ

description of heavy and light hadron suppression simultaneously.
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The extracted é\yfrom model to data comparison within our LBT
amework is consistent with the value constrained by the '
T Collaboration [Phys. '




0.20

0.15
0.10[E
0.05 R
0.00

~
-

-0.05

0.15
010}
0.05Hka!
0.00%

-

-0.05

0O 10 20 30 O

K\T\(/ﬂ

Anisotropic Flow (v, and v,) of D Mesons
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* Predictions of v, and v, are consistent with CMS data at 5.02 TeV.
* Strong v, is observed for the full p; range.
* Strong v is observed at low p;, but it is consistent with O at high p-.
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* Single hadron observables quantify the

amount of parton energy loss; D-hadron
correlation reveals how the lost energy
is re-distributed.

p-p baseline: Pythia

Au-Au: all charged hadrons from heavy
and light parton shower, recoiled
parton from and back reaction to the
medium (thermal hadrons emitted by
QGP are not included)

dN/d® is increased at all @ due to
parton shower in Au-Au

dE/d® is enhanced at O due to ¢ energy
loss in Au-Au; and broadened at it due
to parton shower and scattering in QGP

Will quantify energy loss and jet
broadening in upcoming work
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Summary and Outlook

e Established a Linear Boltzmann Transport (LBT) Model
that treats heavy and light parton evolution on the
same footing and simultaneously incorporates their
elastic and inelastic scattering inside QGP

* Provided reasonable descriptions of both heavy and
light hadron suppression and flow at RHIC and the LHC

* Discussed D-hadron correlation functions for the first
time: not only quantify the amount of energy loss of
heavy quarks, but also reveal how the lost energy is re-
distributed inside the parton shower; more detailed
guantitative study will be released soon
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Possible Solutions to the R,, vs. v, Puzzle
1. Near T_enhancement of transport coefficient (arXiv: 1605.06447)

0.20

K\T\(/ﬂ

0.15f

> 0.10

0.05F

T Au-Au @ 200 GeV |
0-80%

O.OOO

6 8 10
pT(GeV)

While R,, is fixed, the enhancement of transport coefficient
near T_increases D meson v,

Consistent with findings presented in
Xu et. al., Chin. Phys. Lett. 32, 9 (2015)
Das et. al., Phys. Lett. B747, 260 (2015)

The detailed microscopic mechanism is still an open question
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Possible Solutions to the R,, vs. v, Puzzle

2. Different bulk evolutions
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* Different bulk evolutions that provide same R,, may lead to
non-negligible difference in v,

* KLN initial condition would give even larger v, due to its larger
eccentricity [SC, G.-Y. Qin and S. Bass Phys .Rev. C92 (2015) no.
5, 054909]
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Possible Solutions to the R,, vs. v, Puzzle
3. Effect of the initial state fluctuation of the bulk matter

5 soft 2
hard( ) < hard( )> 1 (] Noronha-Hostler et. al. PRL
P (v5°FE) 116 (2016), 252301
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-, fag 2 015}
& AN X 1 ] 1 1 ] ] 1
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[ Courtesy of B. Schenke ]
* Only around 10% larger v, (hard) is observed in our calculation

after the inclusion of the fluctuation of the bulk matter

* Consistent with (6v,/<v,>)? [soft] ~ 10% from our LBL-CCNU hydro
+ Trento (IP-Glasma), and also the value from MUSIC + IP-Glasma



Heavy Flavor Initial Production

e |nitial production: MC-Glauber for the position space and LO
pPQCD calculation (Combridge,1979) for the momentum space

¢ Parton distribution functions: CTEQS (Lai, 2000)
e Nuclear shadowing effect: EPS09 (Eskola, 2009)

(Taken from Eskola 2009) 10" ——— ———————
~ = = = pp -> ¢ no shadowing
| 5l : - Fermi- TN\ AA -> ¢ with shadowing |]
antishadowing ]
Y. o motion T . T pp->b no shadowing
§ L1 + = « — AA -> b with shadowing|]
: (8 .
S [,
: g .
p.c : < 10 4 - i
s : =)
: o
- . E
Yo - shadowing —8 ) O.o - -
02 : X Pb-Pb @ 2.76 TeV e
a
||||| | 1 ||||l|| | | IIIIII 10-8 . 1 . | , | , | .
L. 2 =1 0 5 10 15 20 25
10 10 10 1 p, (GeV)

Significant shadowing effect for heavy quark production at low
p+ (especially at the LHC energy) = impact on R,



Comment on the Transport Coefficient

* Only one parameter a5 in our transport model which determines
both the 2->2 rate and ¢ that governs the 2->2+n process

* LO pQCD calculation fails at low p and T near T, and thuspand T
dependent modification of transport coefficient is required in
order to describe experimental data:

&S — KTa87 é — qu\

At highpand T, LO pQCD calculation is respected, at low pand T
near T_, non-perturbative modification is introduced

* Only investigate possible phenomenological effects of K, and K;
in this work; a precise extraction of these non-perturbative
effects will be left for a future effort — global fit to experimental
data with a Bayesian method [Bernhard et. al., PRC 91 (2015)]



RAA

1.2

0.9

0.6

0.3

= e 4

wAvE- R 2elell
,_Q>,_Q>.Q>-C‘>§>§}
ow

+
o>

+
>

-+
o>

(9]

.
o>

Pb-Pb @ 5.02 TeV (m.b.)

§/T°=5.03

[ Dy(2nT) =5.00 ]

:

30
p; (GeV)

with Abir, Qin and Majumder

40 5

0

60

Kxﬁ



