Polarization of quarkonium in $p+p$ and $h+A$

Vincent Cheung
Nuclear Physics Group,
Physics Department, University of California, Davis

Oct 31, 2017

UCDAVIS

DEPARTMENT OF PHYSICS

Overview

(1) Introduction

- quarkonium
- production models
- polarization
(2) ICEM Polarization at Leading Order
- polarized cross section at parton level
- feed down production treatment
- energy and rapidity dependence
- comparing x_{F} dependence with data
(3) ICEM Polarization using k_{T}-factorization Approach
- p_{T} distribution
- comparing p_{T} dependence with data
(4) Conclusion and Future

Quarkonium: A Bound State of $Q \bar{Q}$

Bound by the interquark potental: $V(r)=\sigma r-\alpha_{c} / r^{[1]}$

- linear term refers to the confinement
- $1 / r$ term refers to the Coulomb-like short distance behavior
- $\sigma=0.192 \mathrm{GeV}^{2}, \alpha_{c}=0.471^{[2]}$

	$\begin{aligned} & 2.4 \mathrm{MeV} \\ & 2 / 3 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 1.27 \mathrm{GeV} \\ & 2 / 3 \\ & 1 / 2 \\ & \text { charm } \end{aligned}$	$\begin{gathered} 171.2 \mathrm{GeV} \\ 2 / 3 \\ 1 / 2 \\ \text { top } \end{gathered}$	$\underbrace{0}_{\text {photon }} 0$
$\begin{aligned} & \text { y } \\ & \frac{2}{2} \\ & \frac{0}{3} \end{aligned}$	$\begin{aligned} & -1 / 3 \\ & \text { down } \\ & \text { d.8 } \mathrm{MeV} \\ & \hline \end{aligned}$	$\begin{aligned} & 104 \mathrm{MeV} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { strange } \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{GeV} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { bottom } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$
	$\begin{gathered} <2.2 \mathrm{eV} \\ 0 \\ 1 / 2 \\ \text { electron } \\ \text { neutrino } \end{gathered}$	$\underbrace{<0.1 / \mathrm{MeV}}_{\substack{\text { muon } \\ \text { neutrino }}}$	${ }_{\substack{1 / 2}}^{\substack{<15.5 \\ \text { taeV } \\ \text { neutrino }}} \mathrm{V}_{\mathrm{T}}$	
	$\begin{aligned} & 0.511 \mathrm{MeV} \\ & -1 / 2 \\ & \text { electron } \end{aligned}$	205.7 MeV	$\begin{array}{cc} 1.777 \mathrm{GeV} \\ -1 & \mathrm{~T} \\ 1 / 2 & \mathrm{Tau} \end{array}$	

[^0]
Quarkonium Families

- states above the $H \bar{H}(H=D, B)$ threshold decay hadronically
- states below the $H \bar{H}$ threshold decay electromagnetically to lower energy bound states (feed down)

Discovery and Production Models

Color Evaporation Model [Fritzsch 77; Halzen 77; Glück, Owens, Reya 78]

- spins and colors are averaged

Color Singlet Model [Berger, Jones 81; Baier, Rückl 81]

- only color singlet contribution is considered

Nonrelativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95]

- separate all spin and color states

Quarkonium Production Models

Non Relativistic QCD (NRQCD)

- e.g. for $J / \psi, \sigma_{J / \psi}=\sum_{n} \sigma_{c \bar{c}[n]}\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$
- $\sigma_{c \bar{c}[n]}$ are cross sections in a particular color and spin state n calcuated by perturbative QCD
- $\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$ are nonperturbative Long Distance Matrix Elements (LDMEs) that describe the conversion of $c \bar{c}[n]$ state into final state J / ψ, assuming that the hadronization does not change the kinematics
- LDMEs are assumed to be universal and are expanded in powers of v / c and α_{s}
- leading term is $n={ }^{3} S_{1}^{[1]}$, corresponds to the color singlet model
- color octet states are subleading terms $n=\left\{{ }^{1} S_{0}^{[8]},{ }^{3} S_{1}^{[8]},{ }^{3} P_{J}^{[8]}\right\}$
- mixing of LDMEs are determined by fitting to data, usually p_{T} distributions above some p_{T} cut

Polarization Puzzle ${ }^{3}$

${ }^{3}$ N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).

Quarkonium Production Models

Revisiting the Color Evaporation Model

- all Quarkonium states are treated like $Q \bar{Q}(Q=c, b)$ below $H \bar{H}$ ($H=D, B$) threshold
- does not separate states into color (or spin)
- color is said to be 'evaporated' away during transition from pair to Quarkonium state while preserving the kinematics
- mostly calculated by perturbative QCD
- fewer parameters than NRQCD (one F_{Q} for each Quarkonium state)
- F_{Q} is fixed by comparison of NLO calculation of $\sigma_{Q}^{C E M}$ to \sqrt{s} for J / ψ and $\Upsilon, \sigma\left(x_{F}>0\right)$ and $B d \sigma /\left.d y\right|_{y=0}$ for $J / \psi, B d \sigma /\left.d y\right|_{y=0}$ for Υ
- spin has been averaged over, no previous prediction of polarization in CEM until 2017

Improved Color Evaporation Model [Ma, Vogt 1609.06042]

Leading Order Total Cross Section

$$
\sigma=F_{Q} \sum_{i, j} \int_{m_{Q}^{2}}^{4 m_{H}^{2}} d \hat{s} \int d x_{1} d x_{2} f_{i / p}\left(x_{1}, \mu^{2}\right) f_{j / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i j}(\hat{s}) \delta\left(\hat{s}-x_{1} x_{2} s\right),
$$

F_{Q} is a universal factor for the quarkonium state and is independent of the projectile, target, and energy.

Leading Order Rapidity Distribution

$$
\frac{d \sigma}{d y}=F_{Q} \sum_{i, j} \int_{m_{Q}^{2}}^{4 m_{H}^{2}} \frac{d \hat{s}}{s} f_{i / p}\left(x_{1}, \mu^{2}\right) f_{j / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}_{i j}(\hat{s}),
$$

where $x_{1,2}=(\sqrt{\hat{s} / s}) \exp (\pm y)$.
and m_{Q} is the mass of the quarkonium state Q.
\triangle In the tradition color evaporation model, the lower limit is $4 m_{c}^{2}$ or $4 m_{b}^{2}$.

Polarization of Quarkonium

- defined as the tendency of quarkonium to be in a certain angular momentum state given its total angular momentum
- e.g. an unpolarized $J=1$ production means $J_{z}=-1,0,+1$ production is equally likely
- longitudinal \rightarrow peak at $\vartheta=\pi / 2$; transverse \rightarrow peaks at $\vartheta=0, \pi$

Defining Polarization at Leading Order

Polarization in the Helicity Basis

- helicity is the projection of angular momentum onto the direction of momentum
- if the helicities are the same, then $J_{z}=0$ (longitudinal)
- if the helicities are the opposite, then $J_{z}= \pm 1$ (transverse)

Scattering Amplitudes

In terms of the Dirac spinors u and v, the individual amplitudes at leading order are

$$
\begin{aligned}
\mathcal{A}_{q q} & =\frac{g_{s}^{2}}{\hat{s}}\left[\bar{u}\left(p^{\prime}\right) \gamma_{\mu} v(p)\right]\left[\bar{v}(k) \gamma^{\mu} u\left(k^{\prime}\right)\right] \\
\mathcal{A}_{g g, s} & =-\frac{g_{s}^{2}}{\hat{s}}\left\{-2 k^{\prime} \cdot \epsilon(k)\left[\bar{u}\left(p^{\prime}\right) \epsilon\left(k^{\prime}\right) v(p)\right]\right. \\
& +2 k \cdot \epsilon\left(k^{\prime}\right)\left[\bar{u}\left(p^{\prime}\right) \epsilon(k) v(p)\right] \\
& \left.+\epsilon(k) \cdot \epsilon\left(k^{\prime}\right)\left[\bar{u}\left(p^{\prime}\right)\left(k^{\prime}-\nvdash\right) v(p)\right]\right\} \\
\mathcal{A}_{g g, t} & =-\frac{g_{s}^{2}}{\hat{t}-M^{2}} \bar{u}\left(p^{\prime}\right) \epsilon\left(k^{\prime}\right)(\not k-p p+M) \epsilon(k) v(p) \\
\mathcal{A}_{g g, u} & =-\frac{g_{s}^{2}}{\hat{u}-M^{2}} \bar{u}\left(p^{\prime}\right) \xi(k)\left(\not k^{\prime}-\not p+M\right) \epsilon\left(k^{\prime}\right) v(p),
\end{aligned}
$$

- \mathcal{A} 's are separated according to the S_{z} of the final state

Orbital Angular Momentum

At leading order, the final state $Q \bar{Q}$ is produced with no dependence on the azimuthal angle and thus $L_{z}=0$. To extract the projection on a state with orbital-angular-momentum quantum number L, we determine the corresponding Legendre component \mathcal{A}_{L} in the amplitudes by

$$
\begin{aligned}
& \mathcal{A}_{L=0}=\frac{1}{2} \int_{-1}^{1} d x \mathcal{A}(x=\cos \theta) \\
& \mathcal{A}_{L=1}=\frac{3}{2} \int_{-1}^{1} d x \times \mathcal{A}(x=\cos \theta)
\end{aligned}
$$

$L=2$ amplitudes are not needed for S and χ states production.

$\left|J, J_{z}\right\rangle$ States

Two helicity combinations that result in $S_{z}=0$ are added and normalized to give contribution to the spin triplet state $(S=1)$. We calculate the amplitudes for $J=0,1,2$:

$$
\begin{aligned}
\mathcal{A}_{J=1, J_{z}= \pm 1} & =\mathcal{A}_{L=0, L_{z}=0 ; S=1, S_{z}= \pm 1},(\text { S States }) \\
\mathcal{A}_{J=1, J_{z}=0} & =\mathcal{A}_{L=0, L_{z}=0 ; S=1, S_{z}=0}, \text { (S States) } \\
\mathcal{A}_{J=0, J_{z}=0} & =-\sqrt{\frac{1}{3}} \mathcal{A}_{L=1, L_{z}=0 ; S=1, S_{z}=0},\left(\chi_{0} \text { States }\right) \\
\mathcal{A}_{J=1, J_{z}= \pm 1} & =\mp \frac{1}{\sqrt{2}} \mathcal{A}_{L=1, L_{z}=0 ; S=1, S_{z}= \pm 1},\left(\chi_{1} \text { States }\right) \\
\mathcal{A}_{J=1, J_{z}=0} & =0,\left(\chi_{1} \text { States }\right) \\
\mathcal{A}_{J=2, J_{z}= \pm 2} & =0,\left(\chi_{2} \text { States }\right) \\
\mathcal{A}_{J=2, J_{z}= \pm 1} & =\frac{1}{\sqrt{2}} \mathcal{A}_{L=1, L_{z}=0 ; S=1, S_{z}= \pm 1},\left(\chi_{2} \text { States }\right) \\
\mathcal{A}_{J=2, J_{z}=0} & =\sqrt{\frac{2}{3}} \mathcal{A}_{L=1, L_{z}=0 ; S=1, S_{z}=0} \cdot\left(\chi_{2} \text { States }\right)
\end{aligned}
$$

Polarized Partonic Cross Section ${ }^{4}$

$J^{P}=1^{-}(S$ States $)$

$$
\begin{aligned}
\hat{\sigma}_{q \bar{q}}^{J_{z}=0}(\hat{s}) & =0 \\
\hat{\sigma}_{q \bar{q}}^{J_{z}= \pm 1}(\hat{s}) & =\frac{\pi \alpha_{s}^{2}}{9 \hat{s}} \chi, \\
\hat{\sigma}_{g g}^{J_{g}=0}(\hat{s}) & =\frac{7 \pi \alpha_{s}^{2}}{48 \hat{s}} \frac{M^{2}}{\hat{s} \chi}\left(\ln \frac{1+\chi}{1-\chi}\right)^{2}, \\
\hat{\sigma}_{g g}^{J_{z}= \pm 1}(\hat{s}) & =\frac{\pi^{3} \alpha_{s}^{2}}{1536 \hat{s}} \chi \frac{(\sqrt{\hat{s}}-2 M)(37 \sqrt{\hat{s}}+38 M)}{(2 M+\sqrt{\hat{s}})^{2}} .
\end{aligned}
$$

where $\chi=\sqrt{1-4 M^{2} / \hat{s}}$ and $M=\left\{m_{c}, m_{b}\right\}$.
${ }^{4}$ V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).

Polarized Partonic Cross Section ${ }^{4}$

$J^{P}=0^{+}\left(\chi_{0}\right.$ P States $)$

$$
\begin{aligned}
& \hat{\sigma}_{q \bar{q}}^{J_{z}=0}(\hat{s})=0, \\
& \hat{\sigma}_{g g}^{J_{z}=0}(\hat{s})=\frac{9 \pi \alpha_{s}^{2}}{16 \hat{s}} \frac{M^{2}}{\hat{s} \chi^{3}}\left(2 \chi-\ln \frac{1+\chi}{1-\chi}\right)^{2} .
\end{aligned}
$$

Polarized Partonic Cross Section ${ }^{4}$

$J^{p}=1^{+}\left(\chi_{1}\right.$ P States $)$

$$
\begin{aligned}
\hat{\sigma}_{q \bar{q}}^{J_{z}=0}(\hat{s}) & =0 \\
\hat{\sigma}_{q \bar{q}}^{J_{z}= \pm 1}(\hat{s}) & =\frac{\pi \alpha_{s}^{2}}{18 \hat{s}} \chi, \\
\hat{\sigma}_{g g}^{J_{z}=0}(\hat{s}) & =0, \\
\hat{\sigma}_{g g}^{J_{z}= \pm 1}(\hat{s}) & =\frac{3 \pi^{3} \alpha_{s}^{2}}{256 \hat{s}} \chi \frac{(\sqrt{\hat{s}}-2 M)\left(4 \hat{s}-9 M^{2}\right)}{(2 M+\sqrt{\hat{s}})^{3}} .
\end{aligned}
$$

[^1]
Polarized Partonic Cross Section ${ }^{4}$

$J^{P}=2^{+}\left(\chi_{2}\right.$ P States $)$

$$
\begin{aligned}
\hat{\sigma}_{q \bar{q}}^{J_{z}=0}(\hat{s}) & =0 \\
\hat{\sigma}_{q \bar{q}}^{J_{z}= \pm 1}(\hat{s}) & =\frac{\pi \alpha_{s}^{2}}{18 \hat{s}} \chi, \\
\hat{\sigma}_{g g}^{J_{z}=0}(\hat{s}) & =\frac{9 \pi \alpha_{s}^{2}}{8 \hat{s}} \frac{M^{2}}{\hat{s} \chi^{3}}\left(2 \chi-\ln \frac{1+\chi}{1-\chi}\right)^{2}, \\
\hat{\sigma}_{g g}^{J_{z}= \pm 1}(\hat{s}) & =\frac{3 \pi^{3} \alpha_{s}^{2}}{256 \hat{s}} \chi \frac{(\sqrt{\hat{s}}-2 M)\left(4 \hat{s}-9 M^{2}\right)}{(2 M+\sqrt{s})^{3}},
\end{aligned}
$$

${ }^{4}$ V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).

Feed Down Production ${ }^{5}$

After obtaining their hadron level cross section by convoluting with PDFs, for each directly produced quarkonium state Q, we compute $R_{Q}^{J_{z}}$. We then compute their contribution to the final state $R_{J / \psi}^{J_{z}=0}$ or $R_{\curlyvee(1 \mathrm{~S})}^{J_{2}=0}$ assuming two pions are emitted from an S state feed down and a photon is emitted from a P state feed down by:

$$
\begin{array}{ccccc}
R_{J / \psi}^{J_{z}=0}= & \sum_{\psi, J_{z}} c_{\psi} S_{\psi}^{J_{z}} R_{\psi}^{J_{z}}, R_{\Upsilon(1 \mathrm{~S})}^{J_{z}=0}=\sum_{\Upsilon, J_{z}} c_{\Upsilon} S_{\Upsilon}^{J_{z}} R_{\Upsilon}^{J_{z}} \\
& \\
Q & M_{Q}(\mathrm{GeV}) & c_{Q} & S_{Q}^{J_{z}=0} & S_{Q}^{J_{z}= \pm 1} \\
\hline J / \psi & 3.10 & 0.62 & 1 & 0 \\
\psi(2 \mathrm{~S}) & 3.69 & 0.08 & 1 & 0 \\
\chi_{c 1}(1 \mathrm{P}) & 3.51 & 0.16 & 0 & 1 / 2 \\
\chi_{c 2}(1 \mathrm{P}) & 3.56 & 0.14 & 2 / 3 & 1 / 2 \\
\Upsilon(1 \mathrm{~S}) & 9.46 & 0.52 & 1 & 0 \\
\Upsilon(2 \mathrm{~S}) & 10.0 & 0.1 & 1 & 0 \\
\Upsilon(3 \mathrm{~S}) & 10.4 & 0.02 & 1 & 0 \\
\chi_{b 1}(1 \mathrm{P}) & 9.89 & 0.13 & 0 & 1 / 2 \\
\chi_{b 2}(1 \mathrm{P}) & 9.91 & 0.13 & 2 / 3 & 1 / 2 \\
\chi_{b 1}(2 \mathrm{P}) & 10.3 & 0.05 & 0 & 1 / 2 \\
\chi_{b 2}(2 \mathrm{P}) & 10.3 & 0.05 & 2 / 3 & 1 / 2
\end{array}
$$

${ }^{5}$ S. Digal, P. Petreczky, and H. Satz, Phys. Rev. D 64, 094015 (2001).

Polarization Parameters

$J^{P}=1^{-}(S \text { states })^{6}$

$$
\lambda_{\vartheta}=\frac{1-3 R^{J_{z}=0}}{1+R^{J_{z}=0}}
$$

$$
\begin{aligned}
J^{P}=1^{+}\left(\chi_{1} P \text { states }\right)^{7} & J^{P}=2^{+}\left(\chi_{2} P \text { states }\right)^{7} \\
\lambda_{\vartheta}=\frac{-1+3 R^{J_{z}=0}}{3-R^{J_{z}=0}} & \lambda_{\vartheta}=\frac{-3-3 R^{J_{z}=0}}{9+R^{J_{z}=0}}
\end{aligned}
$$

${ }^{6}$ P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wohri, Eur. Phys. J. C 69, 657 (2010).
${ }^{7}$ P. Faccioli, C. Lourenço, M. Araújo, V. Knünz, I. Krätschmer and J. Seixas, Phys. Lett. B 773, 476 (2017).

Energy Dependence of Polarization Parameter ${ }^{4}$

CTEQ6L1 is used for proton PDFs

Energy Dependence

- direct production: $\lambda_{\vartheta}^{1 \mathrm{~S}}<\lambda_{\vartheta}^{2 \mathrm{~S}}<\lambda_{\vartheta}^{3 \mathrm{~S}}$
- prompt production: $\lambda_{\vartheta}^{\Upsilon(1 \mathrm{~S})}<\lambda_{\vartheta}^{J / \psi}$
- prompt J / ψ and $\Upsilon(1 S)$ become longitudinally polarized at high \sqrt{s}
${ }^{4}$ V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).
Vincent Cheung (UC Davis)
Heavy Flavor Workshop 2017

Rapidity Dependence of Polarization Parameter ${ }^{4}$

Rapidity Dependence

- λ_{ϑ} is most negative (longitudinal) at $y=0$ and increases as $|y|$ increases
- production becomes transversely polarized at kinematics limits

[^2]
Comparing x_{F} Dependence with Fixed-Target Data ${ }^{8,9}$

$x_{F}\left(x_{1}-x_{2}\right)$ Dependence (GRS99 for π PDFs and EPS09 for W PDFs)

- longitudinally polarized at small $\left|x_{F}\right|$ and transversely polarized at large $\left|x_{F}\right|$
- prediction is consistent with the ~ 0 polarization for $\Upsilon(1 S)$
${ }^{8}$ T. H. Chang et al. (NuSea Collaboration), Phys. Rev. Lett. 91, 211801 (2003).
${ }^{9}$ C. N. Brown et al. (NuSea Collaboration), Phys. Rev. Lett. 86, 2529 (2001).
Vincent Cheung (UC Davis)
Heavy Flavor Workshop 2017

Predictions for $p+\mathrm{Pb}$ at Fixed-Target Energy at the LHC^{4}

x_{F} Dependence

- at $\sqrt{s_{N N}}=72$ and 115 GeV
- prompt J / ψ : polarization already starts to saturate \rightarrow no difference
- prompt $\Upsilon(1 S)$: more longitudinal for $\sqrt{s_{N N}}=115 \mathrm{GeV}$
${ }^{4}$ V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).

ICEM Polarization using k_{T}-factorization Approach

Motivation

- motivated by NRQCD calculations using k_{T}-factorization approach ${ }^{10}$
- obtain p_{T}-dependence using partonic cross section at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the high-energy limit
- allows us to compare with more extensive p_{T}-dependent data
- see if p_{T}-averaged calculation is closer to data in x_{F} dependence

ICEM Cross Section using k_{T}-factorization Approach

$$
\begin{aligned}
\sigma & =F_{Q} \int_{m_{Q}^{2}}^{4 m_{H}^{2}} d \hat{s} \int d x_{1} \int d x_{2} \int d k_{1} T^{2} \int d k_{2} T^{2} \int \frac{d \phi_{1}}{2 \pi} \int \frac{d \phi_{2}}{2 \pi} \\
& \times \Phi_{1}\left(x_{1}, k_{1 T}, Q_{1}\right) \Phi_{2}\left(x_{2}, k_{2 T}, Q_{2}\right) \hat{\sigma}(\mathcal{R}+\mathcal{R} \rightarrow Q \bar{Q}) \\
& \times \delta\left(\hat{s}-x_{1} x_{2} s+\left|\vec{k}_{1 T}+\vec{k}_{2} T\right|^{2}\right)
\end{aligned}
$$

${ }^{10}$ B. A. Kniehl, V. A. Saleev and D. V. Vasin, Phys. Rev. D 73, 074022 (2006).

Setup of the Calculation

- high energy \rightarrow production is dominated by t-channel gluon exchange
- transverse momenta $\left(k_{T}\right)$ of the incoming gluons and their off-shell properties can no longer be neglected \rightarrow Reggeized gluons (\mathcal{R})
- $\mathcal{A}(\mathcal{R}+\mathcal{R} \rightarrow Q \bar{Q})=\epsilon^{\mu}\left(k_{1}\right) \epsilon^{\nu}\left(k_{2}\right) \mathcal{A}_{\mu, \nu}(g+g \rightarrow Q \bar{Q})$
- $\epsilon\left(k_{1}\right)=\left(0, \frac{\overrightarrow{k_{1} T}}{\mid k_{1} T}, 0\right), \epsilon\left(k_{2}\right)=\left(0, \frac{\overrightarrow{k_{2} T}}{\mid k_{2} T}, 0\right)$
- $k_{1}=\left(x_{1} s, \overrightarrow{k_{1} T}, x_{1} s\right), k_{2}=\left(x_{2} s, \overrightarrow{k_{2} T},-x_{2} s\right)$
- calculated using JH-2013 ${ }^{11}$ unintegrated PDFs, $\Phi\left(x, k_{T}, Q\right)$
- factorization scale set at $Q^{2}=m_{T}^{2}$
- renormalization scale set at $\mu^{2}=\hat{s}$
- in Helcity (HX) Frame (to compare with data)

[^3]
p_{T} Distribution 12

. F_{Q} is set to 1 here
Production is unpolarized when $\sigma_{\text {Longitudinal }}=\sigma_{\text {Transverse }}$

p_{T} distribution of direct J / ψ

- unpolarized production falls off as $\sim p_{T}^{-5}$ to p_{T}^{-6}
- both J / ψ and $\Upsilon(1 S)$ become unpolarized at $p_{T} \sim 15 \mathrm{GeV}$
${ }^{12}$ V. Cheung and R. Vogt, in preparation.

p_{T} Dependence of Polarization Parameter ${ }^{12}$

© λ_{ϑ} is independent of F_{Q}

p_{T} dependence of direct J / ψ and $\Upsilon(1 S)$ polarization

- transverse at small p_{T} and slightly longitudinal at large p_{T}
- the range for $\Upsilon(1 S)$ is larger than that for J / ψ

[^4]
Revisiting the Polarization Puzzle with ICEM

p_{T}-dependence with $p \bar{p}$ data ${ }^{12,13}$

p_{T}-dependence of direct J / ψ polarization at $\sqrt{s}=1.96 \mathrm{TeV}$

- $|y|<0.6$
- band is contructed by varying $1.2 \mathrm{GeV}<m_{c}<1.5 \mathrm{GeV}$
${ }^{12}$ V. Cheung and R. Vogt, in preparation.
${ }^{13}$ A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 99, 132001 (2007).
Vincent Cheung (UC Davis)
Heavy Flavor Workshop 2017
Oct 31, 2017

Conclusion and Future

- reviewed recent attempts to solve the polarization puzzle
- presented the energy, rapidity, and p_{T} dependence of the polarization of heavy quarkonium production in $p+p$ and $h+A$ collisions in ICEM

Polarization at Leading Order

- longitudinal at most energies and around central rapidity
- transverse at the kinematic limits

Polarization in k_{T}-factorization Approach

- transverse at small p_{T}, and preferrably unpolarized or slightly longitudinal at large p_{T}
- promising approach to have agreement in both yield and polarization

Future in the ICEM

- work on the feed down production treatment
- start full NLO polarization calculation in the CEM

Backup Slides

Polarization and Experimental Acceptance ${ }^{14}$

from left to right: unpolarized, totally transverse, totally longitudinal.
${ }^{14}$ The ATLAS Collaboration, Nucl. Phys. B 850, 387 (2011).

Defining Polarization ${ }^{6}$

Polarization in the Helicity Basis

- $z_{H X}$ is the flight direction of the quarkonium itself in the center-of-mass of the colliding beams
- If the helicities are the same, then $J_{z}=0$ (longitudinal)
- If the helicities are the opposite, then $J_{z}= \pm 1$ (transverse)
${ }^{6}$ P. Faccioli, C. Lourenco, J. Seixas and H. K. Wohri, Eur. Phys. J. C 69, 657 (2010).

JH-2013 uPDF ${ }^{11}$

${ }^{11}$ F. Hautmann and H. Jung, Nucl. Phys. B 883, 1 (2014).

[^0]: ${ }^{1}$ E. Eichten et al., Phys. Rev. D 17, 3090 (1978).
 ${ }^{2}$ F. Karsch, M. T. Mehr, and H. Satz, Z. Phys. C 37, 617 (1988).

[^1]: ${ }^{4}$ V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).

[^2]: ${ }^{4}$ V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).

[^3]: ${ }^{11}$ F. Hautmann and H. Jung, Nucl. Phys. B 883, 1 (2014).

[^4]: ${ }^{12}$ V. Cheung and R. Vogt, in preparation.

