Polarization of quarkonium in p+p and h+A

Vincent Cheung

Nuclear Physics Group, Physics Department, University of California, Davis

Oct 31, 2017

Overview

quarkonium

- production models
- polarization

ICEM Polarization at Leading Order

- polarized cross section at parton level
- feed down production treatment
- energy and rapidity dependence
- comparing x_F dependence with data

3 ICEM Polarization using k_T -factorization Approach

- p_T distribution
- comparing p_T dependence with data

Conclusion and Future

Quarkonium: A Bound State of $Q\overline{Q}$

Bound by the interquark potental: $V(r) = \sigma r - \alpha_c/r^{[1]}$

- linear term refers to the confinement
- 1/r term refers to the Coulomb-like short distance behavior
- $\sigma = 0.192 \text{ GeV}^2$, $\alpha_c = 0.471^{[2]}$

¹E. Eichten *et al.*, Phys. Rev. D **17**, 3090 (1978). ²F. Karsch, M. T. Mehr, and H. Satz, Z. Phys. C **37**, 617 (1988).

Vincent Cheung (UC Davis)

Quarkonium Families

- states above the $H\overline{H}$ (H = D, B) threshold decay hadronically
- states below the HH threshold decay electromagnetically to lower energy bound states (feed down)

Discovery and Production Models

Color Evaporation Model [Fritzsch 77; Halzen 77; Glück, Owens, Reya 78]

spins and colors are averaged

Color Singlet Model [Berger, Jones 81; Baier, Rückl 81]

• only color singlet contribution is considered

Nonrelativistic QCD (NRQCD) [Bodwin, Braaten, Lepage 95]

separate all spin and color states

Vincent Cheung (UC Davis)

Non Relativistic QCD (NRQCD)

• e.g. for
$$J/\psi$$
, $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \langle \mathcal{O}^{J/\psi}[n] \rangle$

- σ_{cc[n]} are cross sections in a particular color and spin state n calcuated by perturbative QCD
- (O^{J/ψ}[n]) are nonperturbative Long Distance Matrix Elements (LDMEs) that describe the conversion of cc[n] state into final state J/ψ, assuming that the hadronization does not change the kinematics
- LDMEs are assumed to be universal and are expanded in powers of v/c and $\alpha_{\rm s}$
- leading term is $n = {}^{3}S_{1}^{[1]}$, corresponds to the color singlet model
- color octet states are subleading terms $n = \{ {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[8]} \}$
- mixing of LDMEs are determined by fitting to data, usually p_T distributions above some p_T cut

Polarization Puzzle³

³N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).

Vincent Cheung (UC Davis)

Revisiting the Color Evaporation Model

- all Quarkonium states are treated like $Q\overline{Q}$ (Q = c, b) below $H\overline{H}$ (H = D, B) threshold
- does not separate states into color (or spin)
- color is said to be 'evaporated' away during transition from pair to Quarkonium state while preserving the kinematics
- mostly calculated by perturbative QCD
- fewer parameters than NRQCD (one F_Q for each Quarkonium state)
- F_Q is fixed by comparison of NLO calculation of σ_Q^{CEM} to \sqrt{s} for J/ψ and Υ , $\sigma(x_F > 0)$ and $Bd\sigma/dy|_{y=0}$ for J/ψ , $Bd\sigma/dy|_{y=0}$ for Υ
- spin has been averaged over, no previous prediction of polarization in CEM until 2017

Improved Color Evaporation Model [Ma, Vogt 1609.06042]

Leading Order Total Cross Section

$$\sigma = F_Q \sum_{i,j} \int_{m_Q^2}^{4m_H^2} d\hat{s} \int dx_1 dx_2 f_{i/p}(x_1, \mu^2) f_{j/p}(x_2, \mu^2) \hat{\sigma}_{ij}(\hat{s}) \delta(\hat{s} - x_1 x_2 s) ,$$

 F_Q is a universal factor for the quarkonium state and is independent of the projectile, target, and energy.

Leading Order Rapidity Distribution

$$\frac{d\sigma}{dy} = F_Q \sum_{i,j} \int_{m_Q^2}^{4m_H^2} \frac{d\hat{s}}{s} f_{i/p}(x_1,\mu^2) f_{j/p}(x_2,\mu^2) \hat{\sigma}_{ij}(\hat{s}) ,$$

where $x_{1,2} = (\sqrt{\hat{s}/s}) \exp(\pm y)$.

and m_Q is the mass of the quarkonium state Q.

 $\underline{\Lambda}$ In the tradition color evaporation model, the lower limit is $4m_c^2$ or $4m_b^2$.

Vincent Cheung (UC Davis)

Heavy Flavor Workshop 2017

Oct 31, 2017 9 / 31

Polarization of Quarkonium

- defined as the tendency of quarkonium to be in a certain angular momentum state given its total angular momentum
- e.g. an unpolarized J = 1 production means $J_z = -1$, 0, +1 production is equally likely
- longitudinal ightarrow peak at $artheta=\pi/2;$ transverse ightarrow peaks at $artheta=0,\pi$

Defining Polarization at Leading Order

Polarization in the Helicity Basis

- helicity is the projection of angular momentum onto the direction of momentum
- if the helicities are the same, then $J_z = 0$ (longitudinal)
- if the helicities are the opposite, then $J_z = \pm 1$ (transverse)

Scattering Amplitudes

In terms of the Dirac spinors u and v, the individual amplitudes at leading order are

$$\begin{split} \mathcal{A}_{qq} &= \frac{g_s^2}{\hat{s}} [\overline{u}(p')\gamma_{\mu}v(p)] [\overline{v}(k)\gamma^{\mu}u(k')] ,\\ \mathcal{A}_{gg,s} &= -\frac{g_s^2}{\hat{s}} \Big\{ -2k' \cdot \epsilon(k) [\overline{u}(p') \not\epsilon(k')v(p)] \\ &+ 2k \cdot \epsilon(k') [\overline{u}(p') \not\epsilon(k)v(p)] \\ &+ \epsilon(k) \cdot \epsilon(k') [\overline{u}(p')(\not k' - \not k)v(p)] \Big\} ,\\ \mathcal{A}_{gg,t} &= -\frac{g_s^2}{\hat{t} - M^2} \overline{u}(p') \not\epsilon(k')(\not k - \not p + M) \not\epsilon(k)v(p) ,\\ \mathcal{A}_{gg,u} &= -\frac{g_s^2}{\hat{u} - M^2} \overline{u}(p') \not\epsilon(k)(\not k' - \not p + M) \not\epsilon(k')v(p) , \end{split}$$

• \mathcal{A} 's are separated according to the S_z of the final state

At leading order, the final state $Q\overline{Q}$ is produced with no dependence on the azimuthal angle and thus $L_z = 0$. To extract the projection on a state with orbital-angular-momentum quantum number L, we determine the corresponding Legendre component A_L in the amplitudes by

$$\mathcal{A}_{L=0} = \frac{1}{2} \int_{-1}^{1} dx \mathcal{A}(x = \cos \theta) ,$$

$$\mathcal{A}_{L=1} = \frac{3}{2} \int_{-1}^{1} dx \, x \mathcal{A}(x = \cos \theta) .$$

L = 2 amplitudes are not needed for S and χ states production.

$|J, J_z\rangle$ States

Two helicity combinations that result in $S_z = 0$ are added and normalized to give contribution to the spin triplet state (S = 1). We calculate the amplitudes for J = 0, 1, 2:

$$\begin{aligned} \mathcal{A}_{J=1,J_{z}=\pm 1} &= \mathcal{A}_{L=0,L_{z}=0;S=1,S_{z}=\pm 1} , (\text{S States}) \\ \mathcal{A}_{J=1,J_{z}=0} &= \mathcal{A}_{L=0,L_{z}=0;S=1,S_{z}=0} , (\text{S States}) \\ \mathcal{A}_{J=0,J_{z}=0} &= -\sqrt{\frac{1}{3}} \mathcal{A}_{L=1,L_{z}=0;S=1,S_{z}=0} , (\chi_{0} \text{ States}) \\ \mathcal{A}_{J=1,J_{z}=\pm 1} &= \mp \frac{1}{\sqrt{2}} \mathcal{A}_{L=1,L_{z}=0;S=1,S_{z}=\pm 1} , (\chi_{1} \text{ States}) \\ \mathcal{A}_{J=1,J_{z}=0} &= 0 , (\chi_{1} \text{ States}) \\ \mathcal{A}_{J=2,J_{z}=\pm 2} &= 0 , (\chi_{2} \text{ States}) \\ \mathcal{A}_{J=2,J_{z}=\pm 1} &= \frac{1}{\sqrt{2}} \mathcal{A}_{L=1,L_{z}=0;S=1,S_{z}=\pm 1} , (\chi_{2} \text{ States}) \\ \mathcal{A}_{J=2,J_{z}=\pm 1} &= \frac{1}{\sqrt{2}} \mathcal{A}_{L=1,L_{z}=0;S=1,S_{z}=\pm 1} , (\chi_{2} \text{ States}) \\ \mathcal{A}_{J=2,J_{z}=0} &= \sqrt{\frac{2}{3}} \mathcal{A}_{L=1,L_{z}=0;S=1,S_{z}=0} . (\chi_{2} \text{ States}) \end{aligned}$$

Vincent Cheung (UC Davis)

$J^P = 1^-$ (S States)

$$\begin{aligned} \hat{\sigma}_{q\bar{q}}^{J_z=0}(\hat{s}) &= 0, \\ \hat{\sigma}_{q\bar{q}}^{J_z=\pm 1}(\hat{s}) &= \frac{\pi \alpha_s^2}{9\hat{s}} \chi, \\ \hat{\sigma}_{gg}^{J_z=0}(\hat{s}) &= \frac{7\pi \alpha_s^2}{48\hat{s}} \frac{M^2}{\hat{s}\chi} \Big(\ln \frac{1+\chi}{1-\chi} \Big)^2, \\ \hat{\sigma}_{gg}^{J_z=\pm 1}(\hat{s}) &= \frac{\pi^3 \alpha_s^2}{1536\hat{s}} \chi \frac{(\sqrt{\hat{s}} - 2M)(37\sqrt{\hat{s}} + 38M)}{(2M + \sqrt{\hat{s}})^2}. \end{aligned}$$

where $\chi = \sqrt{1 - 4M^2/\hat{s}}$ and $M = \{m_c, m_b\}$.

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

$$\begin{split} J^{P} &= 0^{+} \left(\chi_{0} \ \mathsf{P} \ \mathsf{States} \right) \\ & \hat{\sigma}_{q\bar{q}}^{J_{z}=0}(\hat{s}) \ = \ 0 \ , \\ & \hat{\sigma}_{gg}^{J_{z}=0}(\hat{s}) \ = \ \frac{9\pi\alpha_{s}^{2}}{16\hat{s}} \frac{M^{2}}{\hat{s}\chi^{3}} \Big(2\chi - \ln \frac{1+\chi}{1-\chi} \Big)^{2} \ . \end{split}$$

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

$J^P = 1^+ (\chi_1 \text{ P States})$

$$\begin{aligned} \hat{\sigma}_{q\bar{q}}^{J_z=0}(\hat{s}) &= 0, \\ \hat{\sigma}_{q\bar{q}}^{J_z=\pm 1}(\hat{s}) &= \frac{\pi \alpha_s^2}{18\hat{s}} \chi, \\ \hat{\sigma}_{gg}^{J_z=0}(\hat{s}) &= 0, \\ \hat{\sigma}_{gg}^{J_z=\pm 1}(\hat{s}) &= \frac{3\pi^3 \alpha_s^2}{256\hat{s}} \chi \frac{(\sqrt{\hat{s}} - 2M)(4\hat{s} - 9M^2)}{(2M + \sqrt{\hat{s}})^3}. \end{aligned}$$

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

$J^P = 2^+ (\chi_2 \text{ P States})$

$$\begin{split} \hat{\sigma}_{q\bar{q}}^{J_z=0}(\hat{s}) &= 0, \\ \hat{\sigma}_{q\bar{q}}^{J_z=\pm 1}(\hat{s}) &= \frac{\pi \alpha_s^2}{18\hat{s}} \chi, \\ \hat{\sigma}_{gg}^{J_z=0}(\hat{s}) &= \frac{9\pi \alpha_s^2}{8\hat{s}} \frac{M^2}{\hat{s}\chi^3} \Big(2\chi - \ln \frac{1+\chi}{1-\chi} \Big)^2, \\ \hat{\sigma}_{gg}^{J_z=\pm 1}(\hat{s}) &= \frac{3\pi^3 \alpha_s^2}{256\hat{s}} \chi \frac{(\sqrt{\hat{s}}-2M)(4\hat{s}-9M^2)}{(2M+\sqrt{s})^3}, \end{split}$$

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

Feed Down Production⁵

After obtaining their hadron level cross section by convoluting with PDFs, for each directly produced quarkonium state Q, we compute $R_Q^{J_z}$. We then compute their contribution to the final state $R_{J/\psi}^{J_z=0}$ or $R_{\Upsilon(1S)}^{J_z=0}$ assuming two pions are emitted from an S state feed down and a photon is emitted from a P state feed down by:

$$egin{array}{rcl} R_{J/\psi}^{J_z=0} &=& \sum_{\psi,J_z} c_\psi S_\psi^{J_z} R_\psi^{J_z} \;, R_{\Upsilon(1\mathrm{S})}^{J_z=0} = \sum_{\Upsilon,J_z} c_\Upsilon S_\Upsilon^{J_z} R_\Upsilon^{J_z} \;, \end{array}$$

Q	M_Q (GeV)	cQ	$S_Q^{J_z=0}$	$S_Q^{J_z=\pm 1}$
J/ψ	3.10	0.62	1	0
ψ (2S)	3.69	0.08	1	0
$\chi_{c1}(1P)$	3.51	0.16	0	1/2
$\chi_{c2}(1P)$	3.56	0.14	2/3	1/2
$\Upsilon(1S)$	9.46	0.52	1	0
Υ(2S)	10.0	0.1	1	0
Υ(3S)	10.4	0.02	1	0
$\chi_{b1}(1P)$	9.89	0.13	0	1/2
$\chi_{b2}(1P)$	9.91	0.13	2/3	1/2
$\chi_{b1}(2P)$	10.3	0.05	0	1/2
$\chi_{b2}(2P)$	10.3	0.05	2/3	1/2

⁵S. Digal, P. Petreczky, and H. Satz, Phys. Rev. D **64**, 094015 (2001).

Vincent Cheung (UC Davis)

Polarization Parameters

$$J^P = 1^- (S \text{ states})^6$$

$$\lambda_{\vartheta} = \frac{1 - 3R^{J_z=0}}{1 + R^{J_z=0}}$$

$$J^{P} = 1^{+} (\chi_{1} \text{ P states})^{7}$$

$$J^{P} = 2^{+} (\chi_{2} \text{ P states})^{7}$$

$$\lambda_{\vartheta} = \frac{-1 + 3R^{J_{z}=0}}{3 - R^{J_{z}=0}}$$

$$\lambda_{\vartheta} = \frac{-3 - 3R^{J_{z}=0}}{9 + R^{J_{z}=0}}$$

⁶P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wohri, Eur. Phys. J. C **69**, 657 (2010).

⁷P. Faccioli, C. Lourenço, M. Araújo, V. Knünz, I. Krätschmer and J. Seixas, Phys. Lett. B **773**, 476 (2017).

Vincent Cheung (UC Davis)

Energy Dependence of Polarization Parameter⁴

CTEQ6L1 is used for proton PDFs

Energy Dependence

- direct production: $\lambda_{\vartheta}^{1S} < \lambda_{\vartheta}^{2S} < \lambda_{\vartheta}^{3S}$
- prompt production: $\lambda_{\vartheta}^{\Upsilon(1S)} < \lambda_{\vartheta}^{J/\psi}$
- prompt J/ψ and $\Upsilon(1{
 m S})$ become longitudinally polarized at high \sqrt{s}

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

Oct 31, 2017 21 / 31

Rapidity Dependence of Polarization Parameter⁴

Rapidity Dependence

- λ_{ϑ} is most negative (longitudinal) at y = 0 and increases as |y| increases
- production becomes transversely polarized at kinematics limits

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

Comparing x_F Dependence with Fixed-Target Data^{8,9}

 $x_F (x_1 - x_2)$ Dependence (GRS99 for π PDFs and EPS09 for W PDFs)

- \bullet longitudinally polarized at small $|x_F|$ and transversely polarized at large $|x_F|$
- prediction is consistent with the \sim 0 polarization for $\Upsilon(1S)$

⁸T. H. Chang *et al.* (NuSea Collaboration), Phys. Rev. Lett. **91**, 211801 (2003).
 ⁹C. N. Brown *et al.* (NuSea Collaboration), Phys. Rev. Lett. **86**, 2529 (2001).

Vincent Cheung (UC Davis)

Heavy Flavor Workshop 2017

Oct 31, 2017 23 / 31

Predictions for p+Pb at Fixed-Target Energy at the LHC⁴

x_F Dependence

- at $\sqrt{s_{NN}} = 72$ and 115 GeV
- prompt J/ψ : polarization already starts to saturate \rightarrow no difference
- prompt $\Upsilon(1S)$: more longitudinal for $\sqrt{s_{NN}} = 115$ GeV

⁴V. Cheung and R. Vogt, Phys. Rev. D **96**, 054014 (2017).

Vincent Cheung (UC Davis)

ICEM Polarization using k_T -factorization Approach

Motivation

- motivated by NRQCD calculations using k_T -factorization approach¹⁰
- obtain p_T-dependence using partonic cross section at O(α²_s) in the high-energy limit
- allows us to compare with more extensive p_T -dependent data
- see if p_T -averaged calculation is closer to data in x_F dependence

ICEM Cross Section using k_T -factorization Approach

$$\sigma = F_Q \int_{m_Q^2}^{4m_H^2} d\hat{s} \int dx_1 \int dx_2 \int dk_1 \tau^2 \int dk_2 \tau^2 \int \frac{d\phi_1}{2\pi} \int \frac{d\phi_2}{2\pi}$$

$$\times \Phi_1(x_1, k_1 \tau, Q_1) \Phi_2(x_2, k_2 \tau, Q_2) \hat{\sigma}(\mathcal{R} + \mathcal{R} \to Q\overline{Q})$$

$$\times \delta(\hat{s} - x_1 x_2 s + |\vec{k}_1 \tau + \vec{k}_2 \tau|^2)$$

¹⁰B. A. Kniehl, V. A. Saleev and D. V. Vasin, Phys. Rev. D **73**, 074022 (2006).

- $\bullet\,$ high energy $\rightarrow\,$ production is dominated by t-channel gluon exchange
- transverse momenta (k_T) of the incoming gluons and their off-shell properties can no longer be neglected → Reggeized gluons (R)

•
$$\mathcal{A}(\mathcal{R} + \mathcal{R} \to Q\overline{Q}) = \epsilon^{\mu}(k_1)\epsilon^{\nu}(k_2)\mathcal{A}_{\mu,\nu}(g + g \to Q\overline{Q})$$

•
$$\epsilon(k_1) = \left(0, \frac{\vec{k_{1T}}}{|k_{1T}|}, 0\right), \ \epsilon(k_2) = \left(0, \frac{\vec{k_{2T}}}{|k_{2T}|}, 0\right)$$

•
$$k_1 = (x_1s, \vec{k_{1T}}, x_1s), \ k_2 = (x_2s, \vec{k_{2T}}, -x_2s)$$

- calculated using JH-2013¹¹ unintegrated PDFs, $\Phi(x, k_T, Q)$
- factorization scale set at $Q^2 = m_T^2$
- renormalization scale set at $\mu^2 = \hat{s}$
- in Helcity (HX) Frame (to compare with data)

¹¹F. Hautmann and H. Jung, Nucl. Phys. B **883**, 1 (2014).

Vincent Cheung (UC Davis)

p_T Distribution¹²

$\underline{\wedge} F_Q$ is set to 1 here

 \wedge Production is unpolarized when $\sigma_{\text{Longitudinal}} = \sigma_{\text{Transverse}}$

p_T distribution of direct J/ψ

- unpolarized production falls off as $\sim p_T^{-5}$ to p_T^{-6}
- both J/ψ and $\Upsilon(1{
 m S})$ become unpolarized at $p_T\sim 15~{
 m GeV}$

¹²V. Cheung and R. Vogt, in preparation.

Vincent Cheung (UC Davis)

p_T Dependence of Polarization Parameter¹²

$\underline{\wedge} \ \lambda_{\vartheta}$ is independent of F_Q

 p_T dependence of direct J/ψ and $\Upsilon(1S)$ polarization

- transverse at small p_T and slightly longitudinal at large p_T
- the range for $\Upsilon(1S)$ is larger than that for J/ψ

¹²V. Cheung and R. Vogt, in preparation.

Vincent Cheung (UC Davis)

Revisiting the Polarization Puzzle with ICEM

Vincent Cheung (UC Davis)

p_T -dependence with $p\bar{p}$ data^{12,13}

 p_T -dependence of direct J/ψ polarization at $\sqrt{s} = 1.96$ TeV

- |y| < 0.6
- band is contructed by varying 1.2 GeV $< m_c < 1.5~{\rm GeV}$

¹²V. Cheung and R. Vogt, in preparation.

¹³A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. **99**, 132001 (2007).

Vincent Cheung (UC Davis)

Heavy Flavor Workshop 2017

Oct 31, 2017 30 / 31

Conclusion and Future

- reviewed recent attempts to solve the polarization puzzle
- presented the energy, rapidity, and p_T dependence of the polarization of heavy quarkonium production in p + p and h + A collisions in ICEM

Polarization at Leading Order

- longitudinal at most energies and around central rapidity
- transverse at the kinematic limits

Polarization in k_T -factorization Approach

- transverse at small p_T , and preferrably unpolarized or slightly longitudinal at large p_T
- promising approach to have agreement in both yield and polarization

Future in the ICEM

- work on the feed down production treatment
- start full NLO polarization calculation in the CEM

Vincent Cheung (UC Davis)

Backup Slides

Polarization and Experimental Acceptance¹⁴

from left to right: unpolarized, totally transverse, totally longitudinal.

¹⁴The ATLAS Collaboration, Nucl. Phys. B **850**, 387 (2011).

Vincent Cheung (UC Davis)

Defining Polarization⁶

Polarization in the Helicity Basis

- *z_{HX}* is the flight direction of the quarkonium itself in the center-of-mass of the colliding beams
- If the helicities are the same, then $J_z = 0$ (longitudinal)
- If the helicities are the opposite, then $J_z=\pm 1$ (transverse)

⁶P. Faccioli, C. Lourenco, J. Seixas and H. K. Wohri, Eur. Phys. J. C **69**, 657 (2010). Vincent Cheung (UC Davis) Heavy Flavor Workshop 2017 Oct 31, 2017 3 / 4

JH-2013 uPDF¹¹

Vincent Cheung (UC Davis)