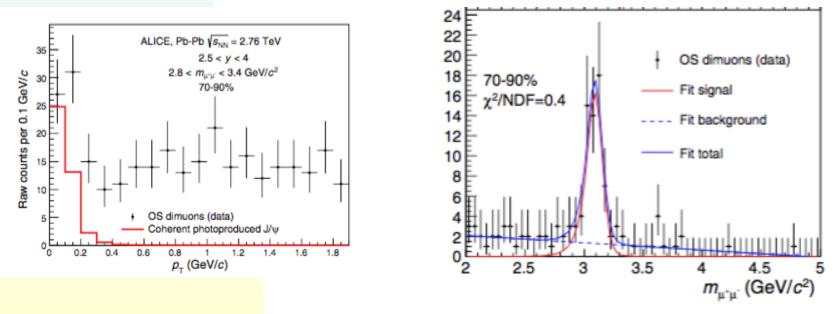
# J/ $\psi$ photoproduction and $\gamma\gamma$ -> ee in peripheral collisions

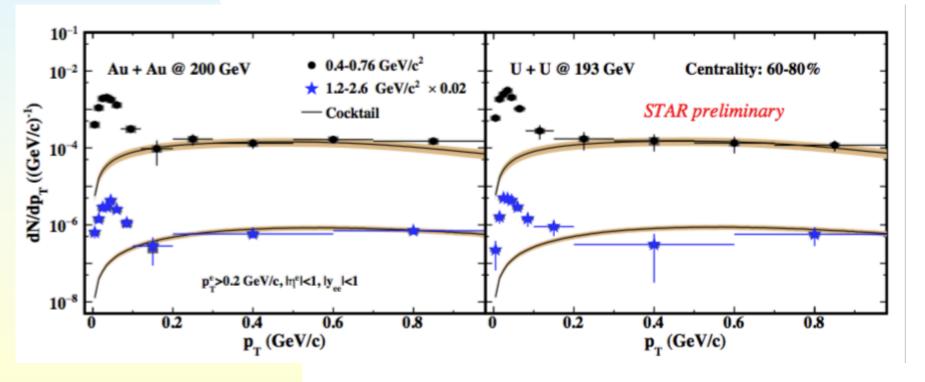
Spencer Klein, LBNL


- The low p<sub>T</sub> excess in peripheral collisions
- Coherent photons from heavy ions
- J/ψ photoproduction
- J/ψ photoproduction in peripheral collisions
- γγ -> ee
- γγ -> ee in peripheral collisions
- What can we learn about the hadronic medium
- Conclusions

presented at the LBNL Heavy flavor workshop, Oct. 30 – Nov. 1, 2017

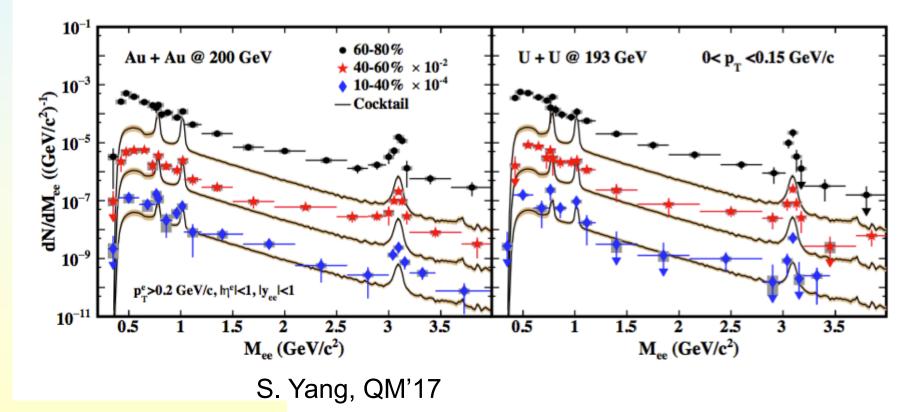
### ALICE J/ $\psi$ -> $\mu^+\mu^-$ excess

J/ψ excess for pT < 100 MeV/c in peripheral collisions</li>


- Magnitude is significant 70-90% centrality larger R<sub>AA</sub>
- Low p<sub>T</sub> peak not expected for any hadronic mechanism
  - Consistent with coherent photoproduction
- Seen at forward rapidity, 2.5 y < 4</p>



ALICE, PRL 116, 222301 (2016)

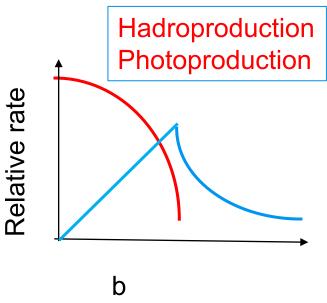

### STAR low $p_T e^+e^-$ excess in AuAu & UU

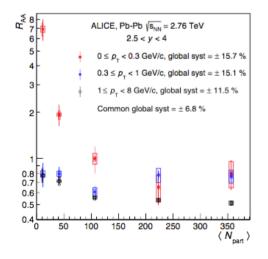
- Excess over hadronic cocktail for p<sub>T</sub> < 150 MeV/c</p>
- Excess is only for pT < 150 Mev/c</p>
  - p<sub>T</sub> spectrum similar to ALICE



### STAR Au-Au + U-U mass spectra

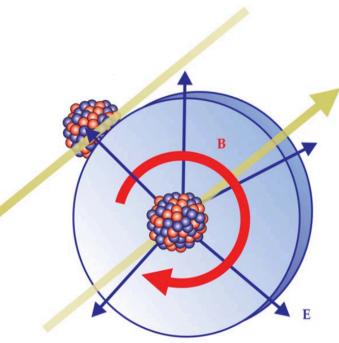
- J/ $\psi$  + e<sup>+</sup>e<sup>-</sup> continuum from 0.4 to 4 GeV/c
  - No clear  $\phi$ ,  $\omega$ ,  $\rho$  excess
  - Relative excess is largest in 60-80% centrality
    - Drops as impact parameter->0.

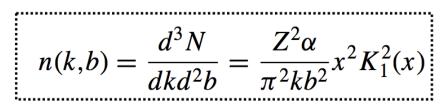




# **R**<sub>AA</sub> for photonic interactions

### R<sub>AA</sub> not optimum term

- Different production mechanisms have different scaling
  - γγ -> ee scales as Z<sup>4</sup>
  - +  $\gamma A \rightarrow J/\psi A$  scales as  $Z^2 A^2$
- Photon flux is highest around nuclear periphery
- Photoproduction is largest in the most peripheral collisions
  - Drops sharply with decreasing radii
  - Drops more slowly with increasing radii
  - γγ-> ee has fairly little |b| dependence
- R<sub>AA</sub> varies rapidly with centrality


ALICE, PRL 116, 222301 (2016)



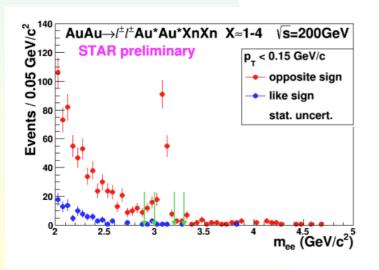



# Photons from nuclei

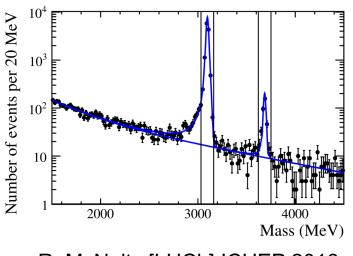
- Crossed E and B fields -> photons
  - Usually, neglect photon virtuality
- Photon energy spectrum is the Fourier transform of E(M) field, as seen at impact parameter b
  - Photon wavelength > width of EM 'pancake'
  - $k_{max} \sim \gamma hc/b$ 
    - Most energetic photons are right near nucleus
- Soft threshold k<sub>max</sub> ~ γhc/R<sub>A</sub>
- Photon flux drops off rapidly inside the nucleus
  - Gauss' Law






 $x = bk/\gamma$ 

## $J/\psi$ photoproduction in UPCs (b>2R<sub>A</sub>)

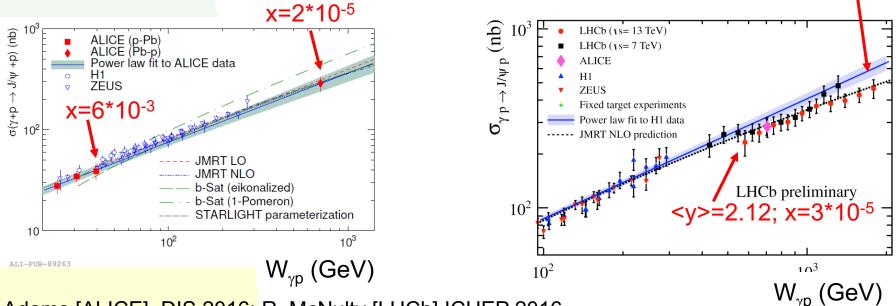

- Convolute photon flux with  $\sigma(\gamma A(p) J/\psi A(p))$ 
  - Subject to two-fold ambiguity in photon direction

+ k=M $_V/2 \exp(\pm y)$ 

- Proton target data from pp or pA (mostly p target)
- Heavy ion target data from AA
- Data from STAR, ALICE, CMS and LHCb



W. Schmidke [STAR], DIS 2016

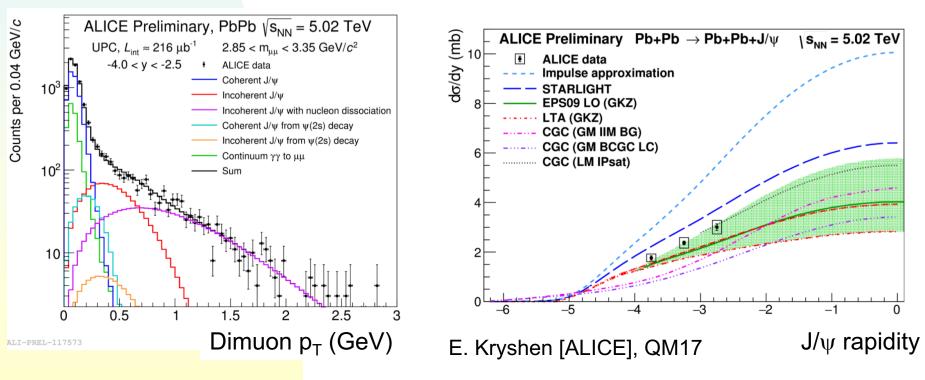



R. McNulty [LHCb] ICHEP 2016

# $\sigma(\gamma p \rightarrow J/\psi p)$ in pA and pp UPCs

Data up to  $W_{\gamma p}$  = 1.5 TeV -5 times the HERA maximum

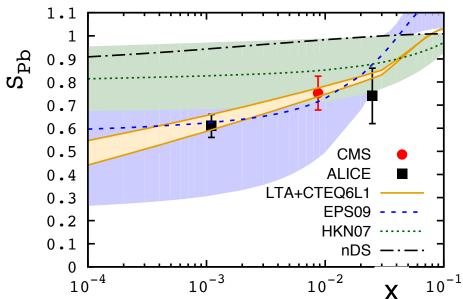
- ALICE & LHC-b see good pA agreement with HERA data
- LHCb 13 TeV-beam data somewhat below 7 TeV data?
  - LHCb uses bootstraps from HERA range for 2-fold ambiguity
  - 13 TeV data supports NLO contribution to cross-section
- J/ψ photoproduction is well understood here
  - Also ψ', Υ




<y>= 4.37; x=3\*10<sup>-6</sup>

J. Adams [ALICE], DIS 2016; R. McNulty [LHCb] ICHEP 2016

# ALICE PbPb-> J/ $\psi$ at $\sqrt{s_{NN}}$ =5.02 GeV


- p<sub>T</sub> spectrum measured out to 2.5 GeV/c
  - Coherent (Pb), incoherent (single N) & nucleon dissociation seen
- $\sigma_{coherent} \sim 80\%$  of 'no shadowing' expectation
  - Consistent with EPS09 model
  - Consistent with leading twist approximation
    - A  $q\bar{q}$  dipole may interact with multiple nucleons in a heavy target



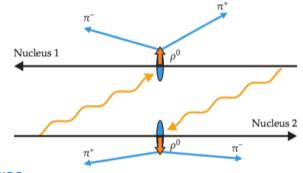
### **Nuclear Shadowing**

- Compare ALICE & CMS data with PDF shadowing models
  - Use impulse approximation for proton reference
    - Normalize to HERA data to correct for higher order terms
    - 6 different parton distributions
- Consistent w/ 2012 leading twist approximation calculation
  - Except for MNRT07 parameterization
- More shadowing than HKN07 parameterization
- EPS09 parameterization fits data well
  - Error bars should shrink
    - Also true w/ EPPS'16
- No need for exotica e. g.
  - Colored glass condensate
  - Hard saturation cutoff

V. Guzey & M. Zhalov, JHEP 1310, 207 (2013) Frankfurt Guzey & Strikman, Phys. Rept. 512, 255 (2012) updated by V. Guzey & M. Strikman.

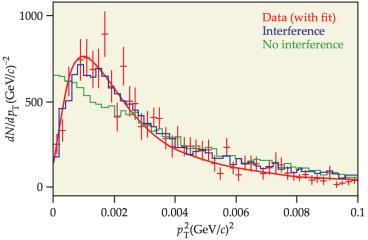


## The $p_T$ spectrum & interference


- p<sub>T</sub> spectrum is set by the coherence conditions
  - The phase factor in  $\sigma = |\Sigma_i A_i \exp(ikr_i)|^2$
  - Sum over target positions i
    - Coherence for momentum kR<sub>A</sub> < 1</li>
- Targets in both nuclei 2 nuclei
  - Nucleus 1 ↔ nucleus 2 is a parity transform
  - Vector mesons are negative parity
     -> subtract amplitudes

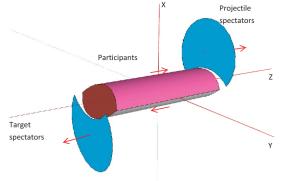
 $\boldsymbol{\sigma} \propto |\boldsymbol{A}_1 - \boldsymbol{A}_2 \exp(i \mathbf{p}_{\mathrm{T}} \cdot \mathbf{b}) / \hbar)|^2$ 

- $\sigma$  suppressed for  $p_T < <|b|>$ 
  - In UPCs @ RHIC, <|b|> 20-50 fm
  - ♦ In PCs |b| is < 15 fm</p>


#### Example of Einstein-Podolsky-Rosen paradox

SK, Joakim Nystrand, PRL **84,** 2330 (2000) & Phys. Lett. **A308**, 323 (2003); STAR PRL 102, 112301 (2009)

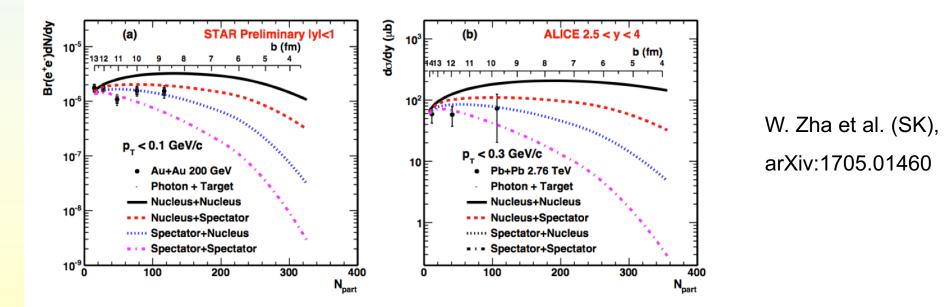



STAR  $\rho^0$  data + fit

11



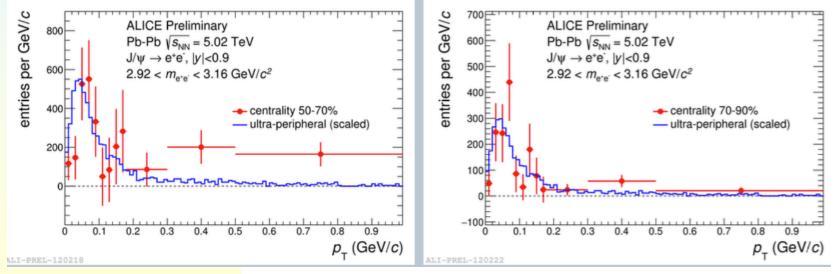
## $J/\psi$ Photoproduction cross-section in PCs


- $\sigma$  depends coherence for photon emission and in the target
  - Entire target, or just spectator region?
- Photons are emitted before collision, at the retarded time  $t=k/\gamma$ 
  - They come from the whole nucleus
- Participant nucleons may lose energy via hadronic interaction, before or after the photoproduction interaction
  - If they lose energy first,  $\sigma(\gamma p J/\psi p)$  drops
    - Time ordering matters –need to consider diagrams with both possibilites
- The photon flux on participant nucleons is lower (Gauss' law)
- The participants are at very small |b|, so destructive interference reduces the cross-section
  - Small contribution to cross-section



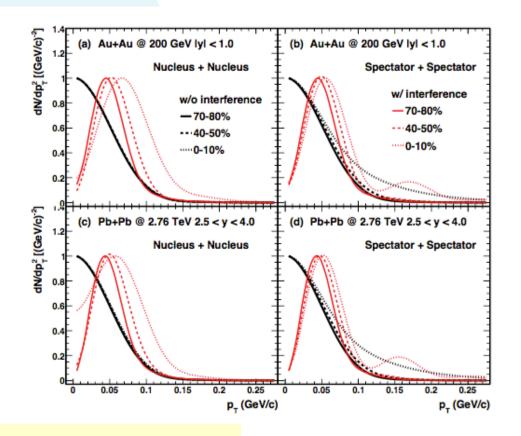
### Calculations of $\sigma$

### Four possibilities:


- photon emission from the whole nucleus or spectators only
- Targets: whole nucleus, or just spectators
- Should bracket the actual cross-section
  - Photon emission from nucleus expected
- Predictions consistent with STAR & ALICE data
  - "Nucleus+Nucleus," "Spectator+Spectator" slightly disfavored



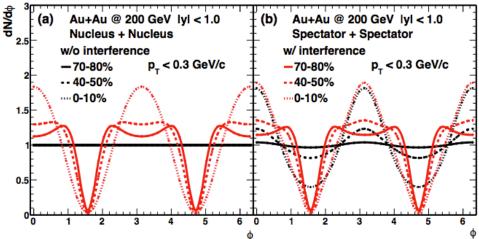
## $p_T$ spectrum for $\gamma A$ ->J/ $\psi$ in PCs

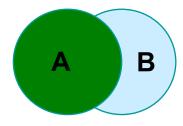

Spectrum is consistent with UPC J/ $\psi$  photoproduction data

- Drop at low p<sub>T</sub> due to interference between two directions
  - |b| is smaller, so interference should extend to higher p<sub>T</sub> than for UPCs
- Spectator-only target has a different matter distribution than full nucleus target.
  - Different p<sub>T</sub> spectrum + some azimuthal anisotropy



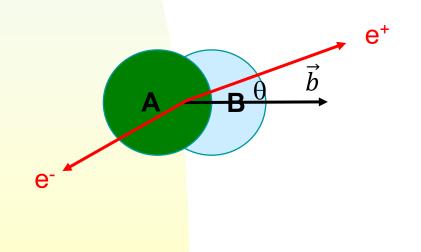
### p<sub>⊤</sub> spectrum - II


- p<sub>T</sub> spectrum depends on size of the coherence region
   Interference depends on |b|
  - Extends to higher p<sub>T</sub> for more central collisions
    - Could reduce total cross-section.




W. Zha et al. (SK), arXiv:1705.01460

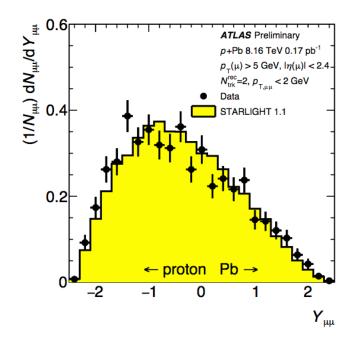
# What can we learn about hadronic collisions (I)?

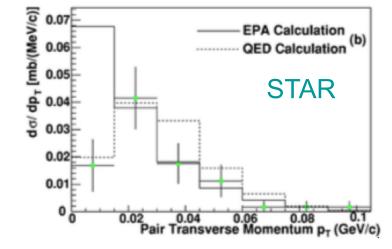

- Most of  $J/\psi$  photoproduction amplitude is from spectator region
  - Little direct probe of quark gluon plasma
- $J/\psi p_T$  distribution is Fourier transform of coherent production region
  - ◆ I. e. region A minus region B
  - This region is asymmetric
- Some sensitivity to event plane
- Photoproduced J/ψ in spectator region may be destroyed by expanding fireball
  S <sup>3</sup> (a) Au+Au © 200 GeV |v| < 1.0</p>
  - W. Zha et al. (SK), arXiv:1705.01460 Z. Xu (Pers. Comm.)





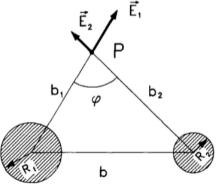
# What can we learn about hadronic collisions (II)?


- J/ψ are linearly polarized following the photon polarization, which follows the impact parameter vector
  - Angular distribution of decay is also somewhat sensitive to impact parameter vector, but large statistics are needed
  - $e^+e^-$  preferentially follow (as  $\cos^2(\theta)$ ) the impact parameter vector
- Both of these approaches require far larger data sets than we currently have




## $\gamma\gamma$ -> ee in UPCs

- Weizsacker-Williams virtual photon method for photon flux
  - Photons are treated as real
- Breit-Wheeler γγ-> ee cross-section
  - Lowest order QED, for real photons
  - Heavily peaked in forward/backward direction
- Generally excellent agreement with data
  - Except: pair  $d\sigma/dp_T$  at very low  $p_T$ 
    - Discrepancy seen by STAR & ATLAS
    - Known problem w/ equivalent photon approach
    - Full lowest order QED calculation matches data
      - Provided by Kai Hencken


ATLAS: arXiv:1702.01625; STAR Phys. Rev. C70, 013902 (2004)





## STARlight mods for peripheral collisions

- Three transverse positions
  - Nucleus 1
  - Nucleus 2
  - The two-photon impact point



- $\sigma \sim \int d\phi \int b_1 db_1 \int b_2 db_2 \, N_{\gamma 1}(b_1) N_{\gamma 2}(b_2) \sigma(\gamma_1 \gamma_2 \gamma_1)$ 
  - Constraints:  $b > R_1 + R_2$  and  $b_1$ ,  $b_2 > R_A$ 
    - The latter insures removes regions where the photon flux is greatly reduced, and ensures that the final state does not interact with the nucleus
  - For peripheral collisions, constraint becomes
    - +  $b_{max}$  > b>  $b_{min}$
    - Keep constraint b<sub>1</sub>, b<sub>2</sub> >R<sub>A</sub>
      - This does not matter much; most production occurs outside the nuclei

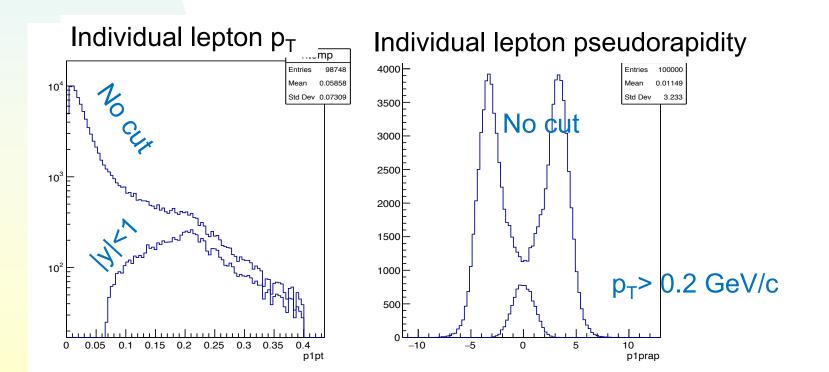
A similar mod could be done for photonuclear interactions.

SK, in progress; G. Bauer & L. G. Ferreira Filho, Nucl. Phys. A518, 786 (1990)

### **Calculational considerations**

- Uranium is not spherical, so focus on AuAu here
   10-40% centrality, 40-60% and 60-80%
- Convert centrality into impact parameters
  - Impact parameter is input to STARlight
  - Simple black-disk geometry with  $\sigma_{geom}$ =7.1b= ' $\pi$ (2R<sub>A</sub>)<sup>2</sup>
    - Implies R<sub>A</sub>=7.5 fm, but, OK for now...
  - 80% centrality = 80% of collisions  $\sigma$ =0.8\*7.1b = 5.6 b, etc.
- Most pairs are near threshold (M<sub>ee</sub> ~ 2m<sub>e</sub>) and invisible to STAR, so the total cross-section is not relevant
  - Apply cuts to MC that match STAR cuts

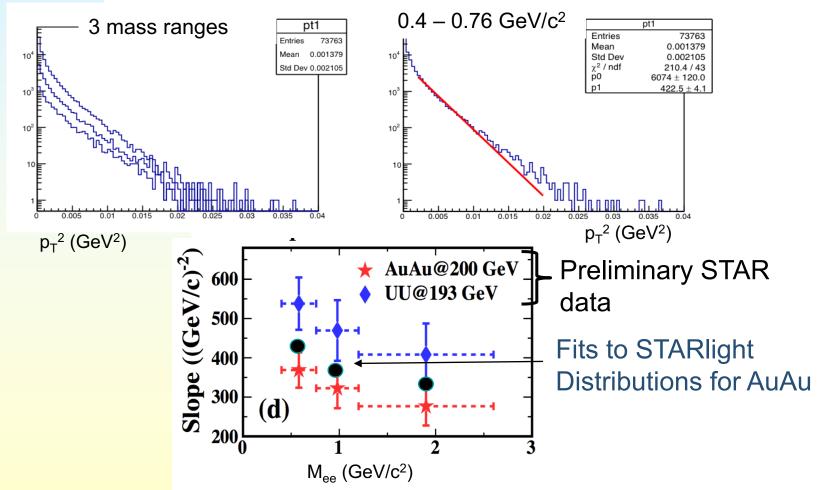
### **Cross-section predictions**


- $\sigma_{hadr}$  is the fraction of the hadronic cross-section
- σ<sub>ee</sub> (restr.) is with M<sub>ee</sub>>0.4 GeV & |y<sub>ee</sub>|<1</p>
  - STAR acceptance for pairs
- $\sigma_{ee}$  (visible) is  $\sigma_{ee}$  (restr.) with  $|\eta_{ee}|$ <1and  $p_{Te}$  > 0.2 GeV/c
  - STAR acceptance for individual leptons

| Centrality | B-range      | σ <sub>hadr</sub> | σ <sub>ee</sub><br>(restr.) | % w/  η <sub>e</sub>  <1 &<br>p <sub>Te</sub> > 0.2 GeV/c | σ <sub>ee</sub> (visible)<br>/σ <sub>hadr</sub> |
|------------|--------------|-------------------|-----------------------------|-----------------------------------------------------------|-------------------------------------------------|
| 60-80%     | 11.6-13.4 fm | 1.42 b            | 3.8 mb                      | 3.3%                                                      | 8.8*10 <sup>-5</sup>                            |
| 40-60%     | 9.4-11.6 fm  | 1.42 b            | 4.0 mb                      | 3.3%                                                      | 9.3*10 <sup>-5</sup>                            |
| 10-40%     | 4.8-9.4 fm   | 2.13 b            | 6.4 mb                      | 3.3%                                                      | 9.9*10 <sup>-5</sup>                            |

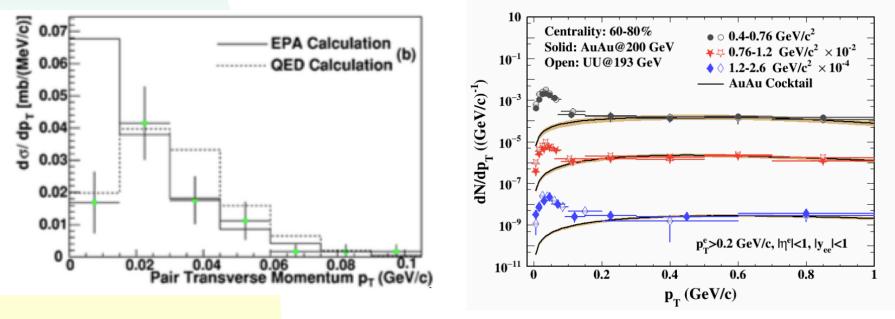
Little evolution with centrality.  $\gamma\gamma$  kinematics do not change significantly between b=2.4 fm and b=6.7 fm. Biggest change is width of range,  $\Delta$ b

### Individual track p<sub>T</sub> & pseudorapidity


- Rapidity is heavily forward/backward peaked
  - Moderated by cut p<sub>T</sub> track > 0.2 GeV/c
- p<sub>T</sub> is peaked near 0
  - ♦ After cut |y|<1, <p<sub>T</sub>> 0.2 GeV/c
- Very few leptons with p<sub>T</sub> > 1 GeV/c → ALICE sees no continuum signal



# Pair $p_T^2$

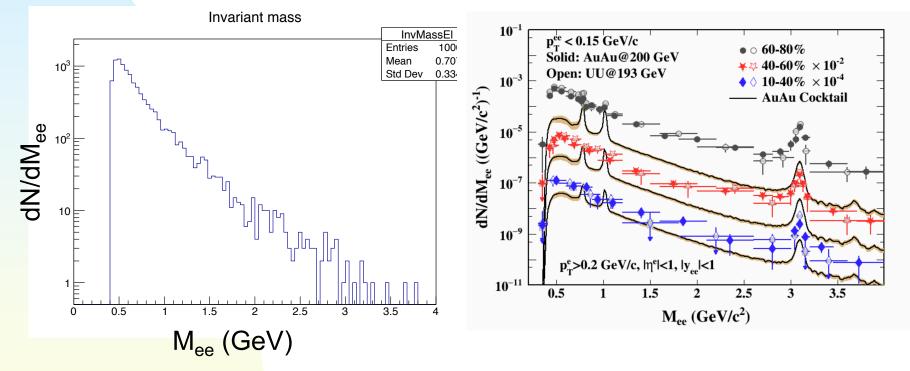

Histogram  $p_T^2$  in 3 mass bins, ala STAR

- Fit  $0.002 < p_T^2 < 0.02$  (GeV/c)<sup>2</sup> range to  $dN/dp_T^2 = A \exp(-Bp_T^2)$ 
  - Not a good fit to the data, but follows STAR procedure
  - Same slope (B) trend as STAR data



## The low $p_T$ drop

- The STAR p<sub>Tee</sub> spectrum drops for p<sub>Tee</sub> < 40 MeV/c</p>
  - Looks similar to interference dip in vector meson photoproduction
- Photon emission with p<sub>T</sub> < photon energy/ion Lorentz boost is suppressed</p>
  - Dip width should scale with photon energy, i. e. with M<sub>ee</sub>
    - Scaling from previous STAR result p<sub>T</sub> peak @ 25 MeV -> p<sub>T</sub> peak @ 75 MeV/c reasonably close

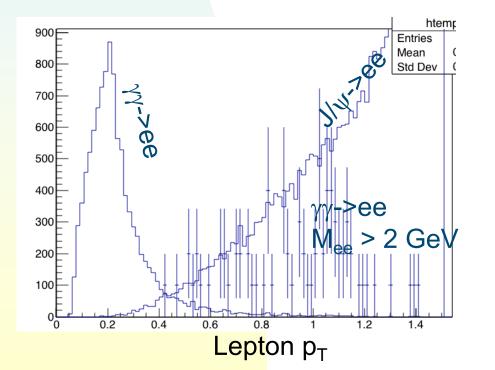



STAR: Phys. Rev. C70, 013902 (2004) & S. Yang, QM '17

**M**<sub>ee</sub> spectrum

STARlight






Low  $p_{Tee}$  paper did not make a fit to the mass spectrum & the right-hand plot is hard to read Both decrease about a factor of 10 going from  $M_{ee}=0.5$  GeV to  $M_{ee}=1.0$  GeV & from  $M_{ee}=1.0$  GeV to  $M_{ee}=2.0$  GeV

### **One diagnostic**

■ J/ $\psi$  (or  $\rho/\omega/\phi$ ) -> ee and  $\gamma\gamma$ -> ee share many characteristics

- Similar pair p<sub>T</sub> spectra
- Hard to distinguish rapidity distributions in central detectors
- The angular distribution of the final state I<sup>+</sup>/- is very different
  - -> Very different lepton spectra
  - With  $p_{T_{II}} > 1$  GeV/c cut, ALICE sees J/ $\psi$  -> ee only

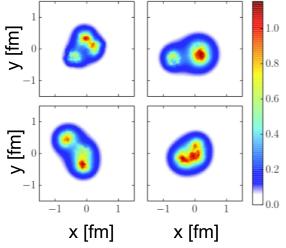


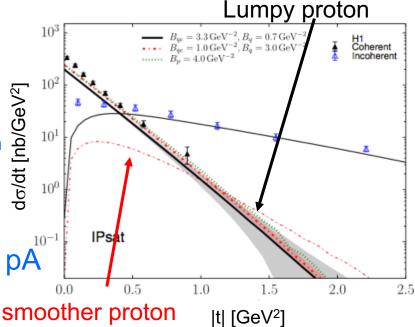
Lepton  $p_T$  w/ STAR cuts STAR  $\gamma\gamma$ -> ee STAR J/ $\psi$  -> ee STAR  $\gamma\gamma$ ->ee w/ M<sub>ee</sub> > 2 GeV/c J/ $\psi$  are in UPC, but this doesn't affect lepton spectra much

Arbitrary normalization

### Conclusions

STAR and ALICE have observed an excess of dilepton pairs with  $p_T < \sim 100$  MeV/c in peripheral heavy ion collisions


- STAR sees  $J/\psi$  + a mass continuum
- $\blacklozenge$  ALICE sees only J/ $\psi$
- The J/ψ production rate and kinematics are consistent with expectations from coherent photoproduction
- The STAR continuum is mostly consistent with two-photon production of electron pairs.
  - The kinematics are well matched to simulations of that process
- ALICE does not see continuum production because its analysis (due to forward muon spectrometer) requires p<sub>Tµ</sub> > 1 GeV/c.
- J/ψ have some sensitivity to the event plane orientation. Large statistics are required to contribute useful information.


### Backup

# **Incoherent VM photoproduction**

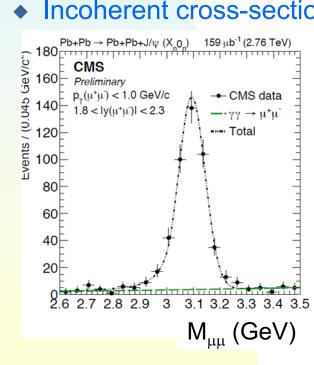
- Probes event-by-event fluctuations in the nuclear configuration
  - Quark/gluon transverse positions
- Walker-Good formalism:

- $d\sigma/dt_{total} \sim < |Amp(K,\Omega)|^2 >_{\Omega}$ 
  - $\Omega$  = nuclear configurations
    - positions of nucleons (gluons)
  - K = kinematic factors: x, Q<sup>2</sup>, t,...
- $d\sigma/dt_{Coherent} \sim |\langle Amp(K,\Omega)\rangle_{\Omega}|^2$
- $d\sigma/dt_{\text{Incoherent}} = d\sigma/dt_{\text{total}} d\sigma/dt_{\text{Coheren}}$
- HERA data on γ\*p->J/ψ p indicates protons are quite lumpy/stringy
  - Reproduces most v<sub>2</sub> & v<sub>3</sub> results in pA
- AA data & calculations exist
  - Need comparisons H. Mäntysaari, QM17; Mäntysaari & Schenke PRD 94, 034042 (2016)

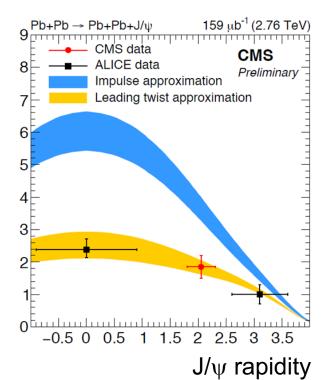




29


### **Cross-section Comparison**

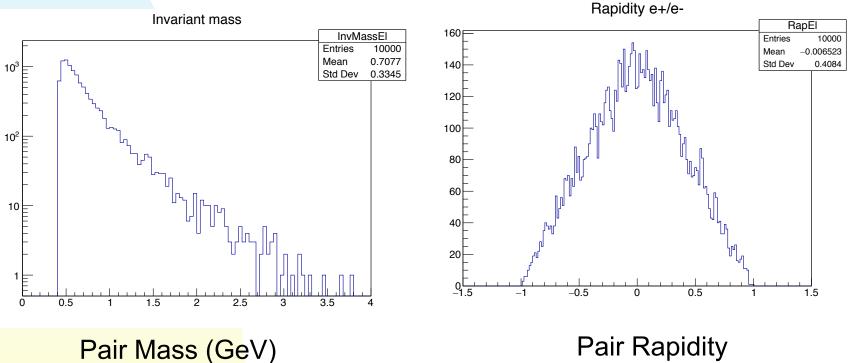
- STAR low p<sub>T</sub> ee analysis used 720 million 0-80% centrality events
- $\sigma$  for pairs with  $|y_{ee}| < 1$ , Mee>0.4 = 3.8 mb (per pg. 6)
  - 456,000 pairs in AuAu sample
- $\varepsilon$ (both leptons in acceptance) = 0.033
  - STARlight predicts 15,048 visible pairs in sample
- STAR finds about twice as many pairs as STARlight
  - Understanding this is a work in progress
    - Acceptance corrections??
      - Lepton p<sub>T</sub> spectrum is very soft
    - Pair p<sub>T</sub> spectrum?
    - Pair production within nuclei?


# PbPb-> J/ $\psi$ in CMS at $\sqrt{s_{NN}}$ = 2.76 GeV

#### μ<sup>+</sup>μ<sup>-</sup> at |y| = 2.05

- Cross-section is ~ 40% of impulse approximation
  - Moderate nuclear shadowing
  - Consistent with leading twist calculation
- In incoherent photoproduction,  $J/\psi$  & neutrons go in same direction
  - Incoherent cross-section increases rapidly with photon energy?




D. Tapai Takaki [CMS], QM17



### **Pair Kinematic Distributions**

#### For 60-80% centrality

 Centrality doesn't matter much, so I will focus on 60-80% centrality, which has the best signal:noise ratio



Pair Rapidity