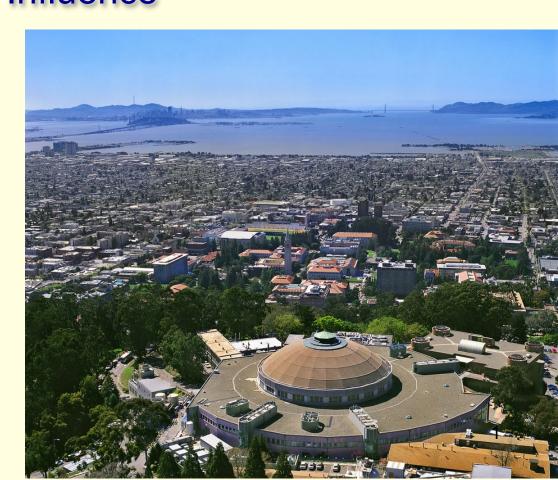


Heavy Flavor Correlations under Thermal Stochastic Influence

*GKozlov*JINR/CERN



CP & Critical Phenomena

In the proximity of *CP*:

- Matter becomes weakly coupled
- Color is no more confined
- Chiral symmetry is restored
- Phase transition is associated with breaking of symmetry What is the symmetry?

Instructive:
$$CP$$
 clarified through $(\mu_B - T)$ plane scanning of $(\mu_B - T)$ phase diagram scanning of $(\mathcal{QCD})_{\beta}$ observables

CP & Critical Phenomena

A few questions arise:

- > CP meaning?
- **Basic observables to be measured when** *CP* **achieved?**
- > New knowledge if *CP* approached?

Answer: in terms of QCD_{β} @ large distances

N/Perturbative phenomena: χSB & Confinement of color

√ ?relations? √

Phase transition of χS Restoration Deconfinement

↓ correlations **↓**

important issue

NO correct solution (massless quarks in the theory)

Effective models, e.g., with topological defects

Phase transitions ⇔Topological defects (TD's)

TD's exist only in phase with SSB where $\langle \phi \rangle_{vacuum}$ emerges Non-broken symmetry phase: no solutions relevant to TD's

Minimal model: TD's (strings) arise in Abelian Higgs-like model (Nielsen, Olesen, 1973)

$$SU(N) \xrightarrow{reduction} \left[U(1) \right]^{N-1}$$
 dual scalar thery gauge symmetry breaking \downarrow Higgs-like mechanism

- MA Gauge suggests special properties of QCD vacuum
 Abelian dominance
- Condensation of scalar d.o.f. (Ezawa, Iwasaki, 1982) which provides
- Dual superconductor picture of QCD vacuum ('t Hooft 1981)

Effective model

CP • Fluctuation measure • Observables

may be visible ↓ through

Fluctuations of characteristic length ξ of chiral end mode

Model: effective dual approach to QCD.

Fluctuations based on the order parameter $m \sim \xi^{-1}$

- Deal with gauge-invariant quantities, TPCF as a function of $C_{\mu}(x)$
- Dual color string: $U_{\mathcal{C}}(x,y) \sim exp\left[ig\int_{y}^{x}dz^{\mu}C_{\mu}(z)\right]$, C_{μ}^{a} dual to A_{μ}^{a}

- Particles: Bound states in terms of flux tubes

Flux tubes

Excitations above vacuum: narrow flux tubes, $r_s \sim \xi \sim m^{-1}$ (in the center, $r_s \rightarrow 0$, scalar condensate vanishes)

Ensemble of a single flux tube system, N(R) configurations of f.t.'s $Z_{flux} = \sum_{n} \sum_{n} N(R) \exp[-\beta E(m,R)] D(|\vec{x}|,\beta;M)$

effective energy: $E(m,R) \sim m^2 R \left[a + b \ln (\tilde{\mu}R) \right]$ GK, 2010

Dual gauge field C_u - critical end mode!

$$m^{2}(\beta) \sim g^{2}(\beta)\delta^{(2)}(0)$$

$$\downarrow$$

$$c/(\pi r_{s}^{2}), \quad c \sim O(1)$$

TPCF

At large distances for any correlator (observables)

$$\langle O(\tau, \vec{x}) O(\tau, 0) \rangle \sim A |\vec{x}|^c D(|\vec{x}|, \beta; M) \text{ as } |\vec{x}| \rightarrow \infty$$

$$D(|\vec{x}|, \beta; M) = \exp[-M(\beta)|\vec{x}|], D(|\vec{x}|, \beta; M) \neq 0$$
 even at $\beta = \beta_c$
 $M^{-1}(\beta)$ is the measure of screening effect of color electric field

$$SU(N=2,3) M(\beta) = M^{LO}(\beta) + N\alpha T \ln \left(\frac{M^{LO}(\beta)}{4\pi\alpha T}\right) + 4\pi \alpha T y_{n/p}(N) + O(\alpha^2 T)$$

$$M^{LO}(\beta) = \sqrt{4\pi\alpha \left(\frac{N}{3} + \frac{N_f}{6}\right)} T$$

Kajante et al. 1997

$$\langle O(\tau, \vec{x}) O(\tau, 0) \rangle \sim L_W^{-4} - \frac{T}{V} \sigma_0(\beta) \xi^2 \left[\frac{1}{\xi} \sqrt{\frac{8\pi}{\sigma_0}} - N \ln(\xi \sqrt{2\pi\sigma_0}) + \dots \right]$$
 GK, 2014

- **4** TPCF disappears more sharply for heavier flavors @ small $|\vec{x}|$
- \bot Large fluctuations ξ , TPCF's disappear (CP does approach)

Result:

effective theory in terms of non-perturbative TPCF describes the fluctuations at distances $g\xi/\sqrt{\pi}<|\vec{x}|< M^{-1}$ up to CP

String tension
$$\sigma_0(\beta) \sim m^2(\beta)\alpha(\beta)$$

GK 2010

Flux-tube scheme:

- $\xi \sim m^{-1}$ the penetration length of color-electric field
- $\xi \sim r_s$ "string"-like radius
- $l \sim m_{\phi}^{-1}$ coherent length of scalar (dilaton) condensate
- $\tau = \sqrt{4/(3\alpha)}\xi$ formation time of flux tube (→∞ @ CP)

Dual QCD vacuum.

In SU(3) gluodynamics vacuum is characterized

$$k_{GL} = \frac{\xi}{l} \sim \frac{m_{\phi}}{m}$$
 <1 (type I vacuum, flux tubes attracted)
>1 (type II vacuum, flux tubes repel)

Scalar fields, dilatons ϕ (condensate) remain massive up to the CP (1st order PT) $k_{GL} \rightarrow \infty$ **Deconfinement!**

If $k_{GL} = 1$ parallel strings (carry the same flux) do not interact each other.

Singularity of
$$Z_{flux} \Rightarrow k_{GL} \ge \frac{3}{4} \frac{\alpha(\beta)}{\xi m_{q\bar{q}}} \left[1 + \frac{4}{3} \frac{\xi^2}{\alpha(\beta)\beta} M(\beta) \frac{L_W}{R} \right]$$
 GK 2014

Type-I vac Type-II vac $\to \infty$ as $\xi \to \infty$

Observation of correlations between two bound states (strings) is rather useful & instructive to check the *CP* is approached!

Field theory \Rightarrow RG \Rightarrow Critical Behavior

Phase transitions \Leftarrow presence and the properties of *fixed points*

IR attracted Fixed Points \begin{cases} Phase Transitions of 2nd kind \\ Critical scaling \end{cases}

RG Fluxes (solutions) may leave physical domain containing IRFP (even to ∞)

From theory to phenomenology: Bose-Einstein Correlations @ finite T

Def.:

BEC's are the quantum effect which enhances the probability that multiple bosons be found in the same state, same position, same momentum

Sample with production

```
AA (pp) \rightarrow high \ T \ quark - gluon \ bubble \rightarrow hadronization \rightarrow
\rightarrow chaotic \ hadron's \ production \ with \ different \ directions, \ momenta,
angles
```

What's happened once the critical T is approached and above

- Shape of correlation behavior?
- Correlation radius size?
- Other characteristics to be measured?

Size of the particle source

- Possible approach to *CP* study through spatial correlations of final state particles
- Size effect of space composed of "hot" particles \Rightarrow derive theoretical formulas for 2-,...,N- particle *distribution-correlation functions* (stochastic, chaotic behavior)

Stochastic scale (size) in C's Bose-Einstein GK (2008-2010)

$$C_{2}(q,\lambda) \approx \eta(N) \left[1 + \lambda(v)e^{-\Delta_{qL}}\right], \quad \Delta_{qL} = q^{\mu}\Re_{\mu\nu}q^{\nu}, \quad \eta(N) = \frac{\langle N(N-1)\rangle}{\langle N\rangle^{2}}$$

event-to-event fluctuations

Chaoticity function:

$$\lambda(v) = 1 / (1+v)^{2}, \quad 0 < v < \infty, \quad N \sim V \int d\omega \ m^{2} \frac{1}{e^{(\omega-\mu)\beta} - 1}$$

$$b(x) = a(x) + R(x), \quad \tilde{R}(p_{\mu}) = \sqrt{v \Xi(p,p)}, \quad \Xi = \langle a^{+}(p)a(p) \rangle \text{ GK'98-02}$$

Strength of BE correlations $\tilde{\lambda}(k_{_T},\beta)$

(almost immediate emission of the particle's pairs from a source,)

$$C_2(q,\beta) \approx \eta(N) \left\{ 1 + \tilde{\lambda}(\beta) e^{-q^2 L_{st}^2} \left[1 + \lambda_1(\beta) e^{+q^2 L_{st}^2/2} \right] \right\} (1 + \delta \cdot q + \dots)$$

$$\tilde{\lambda}(\beta) = \frac{\gamma(\omega, \beta)}{\left[1 + \nu(N)\right]^2}, \ \lambda_1 \approx 2\nu, \ \nu \sim \frac{1}{n} \frac{1}{k_{GL}^2}, \text{ as } T \to T_c, \ \gamma(\omega, \beta) \sim O(1)$$

Proposal:

GK 2009-2014

$$\lambda(k_T,\beta) \to 1$$
 as *CP* approached, $k_{GL} \to \infty$ deconfinement Origin: infinite fluctuation length $\xi \to \infty$

- When CP approached:
 - NO signal of enhancement of pairs of same-sign charge particles is observed!

BEC C_2 - function does not deviate from 1.

OBSERVABLES?

The scaling form C_{γ} is useful to predict behavior of observables @ CP

$$L_{st} \rightarrow \infty \ as \ T \rightarrow T_c$$
, $\mu \rightarrow \mu_c$ indicate the vicinity of **CP**

► Observable, e.g.,
$$k_T^2 = \frac{1}{v(N) T^3 L_{st}^5}$$
, $k_T = \left| \vec{p}_{T_1} + \vec{p}_{T_2} \right|$ GK(2011)

Exp: L3/CMS(2011)/ATLAS(2015)/ALICE L decreasing (smooth) with k_T

Chaoticity λ measured. (Most important theor. study)

$$0 < \lambda [\nu(N)] \le 1 \qquad \nu(N) \approx \frac{1}{n k_{GL}^2} O\left(\frac{m_{\phi}^2}{m^2}\right)$$

fully coherent phase chaotic (critical behavior from BM to AM)

Chiral restoration & Particle emission size

Theory:
$$L_{st} = L_{st}(\beta, k_T, m, v(N)!) \sim \frac{1}{v^{1/5}(N)m_h^{\alpha}T^{\gamma}}$$
 GK, 2009-2010
 $v(N) = \frac{2 - \tilde{C}_2(0) + \sqrt{2 - \tilde{C}_2(0)}}{\tilde{C}_2(0) - 1}$, $\tilde{C}_2(0) = \frac{C_2(q = 0)}{\langle N \rangle^2} - \frac{1}{\langle N \rangle}$

$$\langle N \rangle \ge 1 + C_2(0)/2$$
, $C_2(0) \le 2$

CMS (2011): \sqrt{s} =0.9 TeV; 7 TeV,- L_{st} increases with $\langle N \rangle$ ATLAS (2015): \sqrt{s} =0.9 TeV; 7 TeV,- L_{st} increases with $\langle N \rangle$ as well

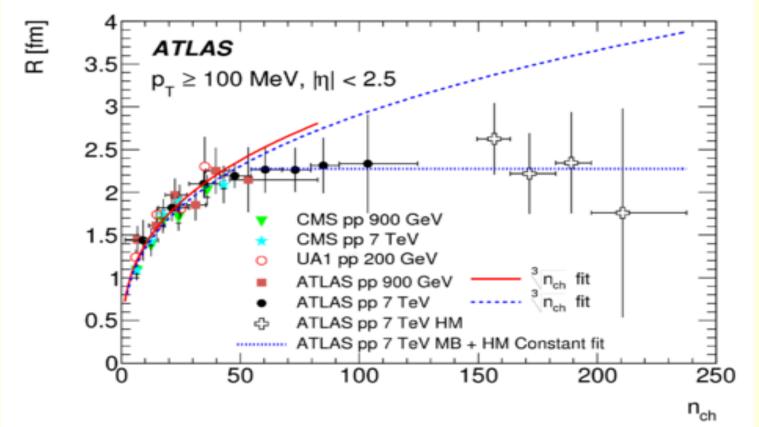
Small distortion ν (vicinity of CP): combined $\overline{\lambda} = \lambda \cdot \lambda_1 \sim \nu$ decreases with heavy flavor mass

4Charactersitic size of the Correlation source

In terms of Ginzburg-Landau criterium $k_{\!\scriptscriptstyle GL}$

«Radius» increases with
$$n \sim n_{ch} R \sim L_{st} \sim \left(\frac{n k_{GL}^2}{k_T^2 T^3}\right)^{1/5}$$
 GK (2009)

ATLAS Coll., Eur. Phys. J.C75 (2015) 466



Expansion of particle emission size

$$L_{st}(\beta) \sim \left[\nu(N)k_T^2 T^3\right]^{-1/5} \to \infty \text{ as } \nu(N) \to 0 \text{ at } T \to T_c \text{ KG 2010}$$

The temperature at which the signal of two-particles correlations disappears is the critical temperature at ${\it CP}$: $C_2(q,T_c)=1$

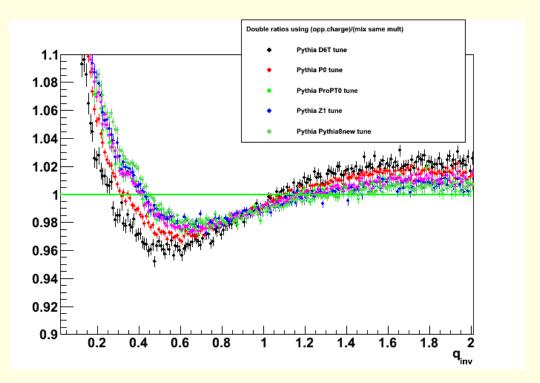
! Too rapid phase transition can include the *explosion* of a "hadronic fireball" just after a phase transition

Dip-effect

The effect of anti-correlations (the dip-effect) is predicted at low charged-particle multiplicity in the event: $C_2(q,N)<1$?! KG 2010
The depth of the dip in the anti-correlation region decreases as N increases.

Observed by CMS at LHC [CMS Coll., JHEP 5 (2011) 029]

Proposal: dip-effect disappears at CP



4

Random Fluctuation Walk $(BM \Rightarrow AM)$

Random stochastic (chaotic) walk with respect to quantum correlations of identical particles. Cross-over walk.

Model 1D x-oriented $(-\infty < x < \infty)$

$$P(x; \overline{\lambda}, \mu_c) = p \sum_{j=0}^{\infty} \overline{\lambda}^j \frac{1}{2} \sqrt{\frac{\pi}{t}} \left[e^{-y_-^{2j}/4t} + e^{-y_+^{2j}/4t} \right]$$

$$y_{\pm}^{j} = x\mu_{c} \pm a^{j}$$
, $a = (\mu / \mu_{c}) > 1$, $t = l\mu_{c}$ (lattice spacing)

$$\lim_{\substack{l \to 0 \\ \mu \neq 0}} P(x; \overline{\lambda}, \mu_c) = p(\overline{\lambda}) \sum_{j=0}^{\infty} \overline{\lambda}^j \pi \left[\delta(x\mu_c - a^j) + \delta(x\mu_c + a^j) \right]$$

$$p(\overline{\lambda}) = \frac{1}{2\pi} (1 - \overline{\lambda}), \quad 0 < \overline{\lambda} \le 1, \quad NC: 2(p + \overline{\lambda}p + \dots + \overline{\lambda}^{j}p + \dots) = 1$$

The limit $\lambda \to 1 \Longrightarrow$ broad behavior of *P*: vicinity of *CP* is approached

$$\bar{\lambda} \to 0 \implies P(x; \bar{\lambda} \to 0, \mu_c) \to 1/(2\pi)$$
 trivial

4 Analyticity of probability $P(x, \lambda, \mu_c)$

Large x (sharp increasing of L_{st}) / or $k \to 0$ (IR analogue) To smooth the particularity (speciality) of $P(x, \lambda, \mu_c)$

$$P(x; \lambda, \mu_c) \rightarrow G(k; \lambda, \mu_c) = p(\lambda) \sum_{j=0}^{\infty} \lambda^j \cos\left(\frac{k}{\mu_c} a^j\right), G(0; \lambda) = \frac{1}{2\pi}$$

Fluctuation length through the even moments of the order 2s:

$$\xi_{(2s)}^{2}(\lambda) \sim m_{(2s)}(\lambda) = \frac{\partial^{2s} G(k, \lambda, \mu_{c})}{\partial k^{2s}} \Big|_{k=0}, \quad \overline{\lambda} \to \lambda(\nu) = \left[1 + \nu(N)\right]^{-2}$$

Finite ξ will provide analytical form of G, however large $\xi \to$ non-analytical behavior of G (a) $k \to 0$ The dual QCD vacuum will influence (through k_{GL}) ξ up to crossover: unified process of phase transition between BM and AM **Analyticity of probability** $P(x, \lambda, \mu_c)$ cont'd I

 $G(k, \lambda, \mu_c)$ in terms of CBE function $C_2(q, \lambda)$

$$G(k;\lambda,\mu_c) = \frac{2 - \overline{C}_2(0)}{2\pi} \sum_{j=0}^{\infty} \left[\overline{C}_2(0) - 1 \right]^j \cos\left(\frac{k}{\mu_c} a^j\right), \quad \overline{C}_2(q;\lambda) \equiv \frac{C_2(q;\lambda)}{\eta(N)}$$

CP: $\lim_{\overline{C}_2(0) \to 2} r.h.s. \to \infty$ at high multiplicities N, $\overline{C}_2(q=0,\lambda) = \overline{C}_2^{\exp}(0)$

Fluctuation length result:
$$\left| \xi_{(2s)}^2(\lambda) \right| = p(\lambda) \sum_{j=0}^{\infty} \left(\frac{\alpha^j}{\mu_c} \right)^{2s} \lambda^j$$
, $\alpha = \frac{\mu}{\mu_c} > 1$

Converged @
$$(\alpha / \mu_c)^{2s} \lambda < 1$$
, $|\xi_{(2s)}^2(\lambda)| \approx p(\lambda) \mu_c^{-2s} (1 + \alpha^{2s} \lambda)$ finite

If $\mu \approx \mu_c$ and $\lambda \to 1$, $\xi \to \infty$ divergence $/\xi \Leftrightarrow \mathbb{CP}/$

- **Analyticity of probability** $P(x, \lambda, \mu_c)$ cont'd II
- Infinite # of divergent (singular) terms in $G(k; \lambda, \mu_c)$ Why?

Because wide range of λ , μ ; singularity @ $k << \mu_c \ (k \to 0)$

■ To find non-analytical part (a) $k \approx 0$

$$G(k; \lambda, \mu_c) = G_{BM}(k; \lambda, \mu_c) + G_{AM}(ak; \lambda, \mu_c)$$
 linear non-homog. eq.

BM $G_{BM}(k,\lambda,\mu_c) = p(\lambda)\cos(k/\mu_c)$ regular if $k \approx 0$, for all λ

AM
$$G_{AM}(k,\lambda,\mu_c) = \lambda G(ak,\lambda,\mu_c)$$
, for $a^{-2} < \lambda < 1$

 $G_{AM}(k; \lambda, \mu_c) \rightarrow 0$, if $\lambda \rightarrow 0$ The phase with **BM** does exist only While $G(ak; \lambda \approx 0, \mu_c) \approx (1/2\pi) \cos(k\mu/\mu_c^2)$ Finite

Solution for AM phase

$$G_{AM}(k;\lambda,\mu_c) \sim \frac{i^{\alpha-2}}{\Gamma(\alpha-1)} \xi_{(\alpha-2)}^2(\lambda) \left| \frac{k}{\mu_c} \right|^{\alpha} \frac{1}{\log a} \sum_{m=0}^{\infty} b_m \cos \left[2\pi m \frac{\log(|k|)}{\log a} + \vartheta_m \right]$$

Divergent if a)
$$\lambda \rightarrow 1$$
 because of $\xi(\lambda)$

b)
$$a = \frac{\mu}{\mu_c} \rightarrow 1$$
 from above

For AM upper limit of μ_c :

$$\mu_c \le \mu \left[1 + \frac{1}{n \ k_{GL}^2} O\left(\frac{m_\phi^2}{m^2}\right) \right]^{-1}$$

CP (cross-over)
$$\mu = \mu_c$$
 at $k_{GL} \rightarrow \infty$

4 Conclusions

- 1. RFW solution: **BM** (regular) + **AM** (singular).
- 2. Cross-over between **BM** and **AM** *Influence on heavy flavor production*
- 2. Main points: $\lambda(v)$, k_{GL} , ξ , $(\mu/\mu_c) > 1$.
- 3. Heavy flavor production source:

Source size L_{st} increases (smoothly) with N at low T.

- \checkmark L_{st} blows up as $T \to T_c$ $/v(N) \to 0, m_h \to 0/$
- \checkmark L_{st} singular @ CP.