How to talk to ordinary people

Why Wikipedia matters

Ida Storehaug RCS-SIS-OA

To be a politically neutral voice for science, advocating investment in fundamental research

To train the general scientific public

To inspire and nurture scientific awareness in all citizens
How to talk to ordinary people

Wikipedia

- To be a politically neutral voice for science, advocating investment in fundamental research
- To train a new generation of scientists and engineers
- To inspire and nurture scientific awareness in all citizens

Target:
- Government
- The broad public
- Media
- Students
- The general public
- Potential donors

Prezi
To be a politically neutral voice for science, advocating investment in fundamental research

To train a new generation of scientists and engineers

To inspire and nurture scientific awareness in all citizens

Target audience

- Governments and policy-makers
- The broader scientific community
- Media and influencers
- Students (from pre-university to graduate)
- The general public
- Potential candidates
- Donors (individual citizens, corporations, foundations)
Why Wikipedia matters

... for students

... for media

... for governments

Elena (2016):
Personnel: 3,852,000 CHF
Materials: 3,312,000 CHF
Total: 12,802,000 CHF = 11.17 mill. €

On Wikipedia:
Detection of antiprotons using GRACE: A new facility ... - CERN Indico
https://indico.cern.ch/event/580169/other-view?fr...
25. nov. 2016 - GRACE is currently running at the CERN Antiproton Decelerator, exploiting the secondary branch of the DEM beam line that it shares with the ...

The Antiproton Decelerator | CERN
https://home.cern/about/accelerators/antiproton-decelerator
The Antiproton Decelerator (AD) is a unique machine that produces low-energy antiprotons for studies of antimatter, and "creates" antitoms. The Decelerator ...
Mangler: grace beamline

Le Décélérateur d'antiprotons | CERN
https://home.cern/fr/about/accelerators/antiproton-decelerator
Oversett denne siden
Will Large Hadron Collider destroy Earth? CERN admits experiments could create black holes

ONE way or another the huge Large Hadron Collider is going to “finish off the planet”, according to conspiracy theorists.

By JON AUSTIN
... for governments

Elena (2016):

Personnel: 3,852,000 CHF
Materials: 3,312,000 CHF
Total: 12,802,000 CHF = 11.17 mill. ¢

On Wikipedia:

ELENA redirects here. For other uses, see Elena (disambiguation).

ELENA (Extra Low ENergy Antiproton) is a 30 m hexagonal storage ring situated inside the AD complex. It is designed to further decelerate the antiproton beam to an energy of 0.1 MeV for more precise measurements. The first beam circulated ELENA on the 18th November 2016. The ring is expected to be fully operational in 2017. GBAR will be the first experiment to use a beam from ELENA, with the rest of the AD experiments following suit in 2019-2020.
Why Wikipedia matters

... for students

... for media

Will Large Hadron Collider destroy Earth? CERN admits experiments could create black holes

On Wikipedia:

Elena (2016):
Personnel: 3,852,000 CHF
Materials: 3,312,000 CHF
Total: 12,802,000 CHF = 11.17 mill. €

Prezi
"Opening up the editing process to all, regardless of expertise, means that reliability can never be ensured."

Robert McHenry, former editor of Encyclopedia Britannica
Nature, 2005: peer review to compare Britannica and Wikipedia's coverage of science

Average Wikipedia-article contained 4 inaccuracies; Britannica about 3
Why does Wikipedia work?

"Opening up the editing process to all, regardless of expertise, means that reliability can never be ensured."

Robert McHenry, former editor of Encyclopedia Britannica
• System of interacting agents
• 200,000 pages vandalized each day
 • Bots
 • Recent changes patrol
 • Watchlists
 • Incidental discovery

• 84,7% of scientists uses Wikipedia in day-to-day work
• 2005: 17% of Nature authors consult Wikipedia on a weekly basis, less than 10% help to update it

still...

Why does Wikipedia work?
Discovery of the W and Z

The paper is based on an early analysis of a sample of collisions with an integrated luminosity of 55 nb$^{-1}$. In this event sample, 27 $W^\pm \rightarrow e^\pm \nu$ events have been recorded [5]. According to minimal SU(2) × U(1), the Z^0 mass is predicted to be [6] $m_{Z^0} = 94 \pm 2.5$ GeV/c^2. The reaction (1) is then approximately a factor of 10 less likely than is the spin in W leptonic decay, by a factor of 0.04.

$\bar{p} + p \rightarrow Z^0 + X$

C. Rubbia, S. van der Meer @ CERN

"The prize was given to Carlo Rubbia for his "(...) idea to convert an existent large accelerator into a storage ring for protons and antiprotons", i.e. the conception of the SppS, and to Simon van der Meer for his "(...) ingenious method for dense packing and storage of proton, now applied for antiprotons"
References

Pictures:
Photo, event in Alice: cern.ch
Photo, ELENA: https://cds.cern.ch/record/2202429
Slide from lecture: https://indico.cern.ch/event/634075/