
A (New?) Transfer
Ecosystem for the WLCG

Brian Bockelman 
WLCG / HSF Workshop 2018

1

Why am I here?
• The announcement in mid-2017 that Globus Toolkit support would end set off a

flurry of activity.

• Some of it was toward shorter-term collaborations around community support
of this software. See https://gridcf.org

• This reinvigorated existing work around replacing various Globus Toolkit
components; the most pressing are:

• Grid Security Infrastructure (GSI): An authentication and authorization
infrastructure based around concepts of identity and X509 proxies.

• GridFTP: A FTP-like transfer protocol that build on top of GSI, supports third-
party-transfers, and multi-TCP-stream transfers.

• Luckily, there’s a huge amount of prior effort to draw on, some dating back
several years.

2

https://gridcf.org

WLCG Transfer Ecosystem
Demonstrator

• There’s a need to organize the entire vertical
stack to have a cohesive solution approach.

• We benefit little if multiple storage elements
take mutually-incompatible approaches.

• Same applies for moving across the data
management / file transfer / storage layers.

• Put together a Google group to coordinate this
activity and start to scale:

• Feel free to join!

• https://groups.google.com/forum/#!forum/
wlcg-http-transfer

Rucio

FTS

dCache

PhEDEx

XRootD

EOS DPM

StoRM

Data Management Layer

File Transfer Layer

Storage Layer

3

https://groups.google.com/forum/#!forum/wlcg-http-transfer
https://groups.google.com/forum/#!forum/wlcg-http-transfer

Transfers Under GridFTP -
Where we are today!

4

Transfers Under GridFTP -
Where we are today!

Storage B

File
Transfer
Service

Request: Start receiving file 1.
Response: OK, listening on port 1234

4

Transfers Under GridFTP -
Where we are today!

Storage B

File
Transfer
Service

Request: Start receiving file 1.
Response: OK, listening on port 1234

Storage A

Request: Send file 1 to port 1234 on Storage B.
Response: OK, in progress!

4

Transfers Under GridFTP -
Where we are today!

Storage B

File
Transfer
Service

Request: Start receiving file 1.
Response: OK, listening on port 1234

Storage A

Request: Send file 1 to port 1234 on Storage B.
Response: OK, in progress!

Send bytestream over TCP

4

Transfers Under GridFTP -
Where we are today!

Storage B

File
Transfer
Service

Request: Start receiving file 1.
Response: OK, listening on port 1234

Storage A

Request: Send file 1 to port 1234 on Storage B.
Response: OK, in progress!

Send bytestream over TCP

• FTS must be authorized to talk to both endpoints.
• Endpoints support the same protocol (GridFTP).
• Queueing (in implementation) is in FTS layer.

4

Alternate TPC Model - 
Where we might go!

5

Alternate TPC Model - 
Where we might go!

File
Transfer
Service

Storage A

Request: Send file 1 to URL on Storage B. 
 - Use given authentication with Storage B.
Response: OK, in progress!

5

Alternate TPC Model - 
Where we might go!

File
Transfer
Service

Storage A

Request: Send file 1 to URL on Storage B. 
 - Use given authentication with Storage B.
Response: OK, in progress!

Storage BGET / PUT

5

Alternate TPC Model - 
Where we might go!

File
Transfer
Service

Storage A

Request: Send file 1 to URL on Storage B. 
 - Use given authentication with Storage B.
Response: OK, in progress!

Storage BGET / PUT

• FTS only communicates with the active storage (A).
• FTS provides URL for B and authz token.

• Transfer from A->B may occur on any mutual protocol.
• FTS relies on storage A for heavy lifting.

5

HTTPS / WebDAV
• WebDAV is a set of HTTP extensions that provide a more

standardized, file-like API with minimal HTTP changes.

• Example: “MKCOL” (make collection) is mostly equivalent to a
POSIX mkdir().

• Another WebDAV extension is COPY, which instructs the WebDAV
server to copy to/from a given URL.

• Precisely what is needed for the alternate TPC model!

• The URL is given in the Source header; not necessarily HTTPS!

COPY /store/path HTTP/1.1
Host: storage.site1.com
Source: https://storage.site2.com/store/path.src

6

HTTPS / WebDAV - 
Authorization Step

• It’s clear FTS can use its favorite existing mechanism when communicating
with the “active” SE (Storage A).

• How does it transfer a credential to the active SE for use with Storage B?

• In X509-land, we have the concept of delegating a credential for this
movement.

• Unfortunately, the delegation procedure is only “standardized” at the
transport layer (TCP).

• The WLCG community has a somewhat ad-hoc* standard for this based
on SOAP, as defined by gridsite.

• It appears complex and perhaps a touch backwards to start new
implementations here.

* https://egee-jra1-data.web.cern.ch/egee-jra1-data/GridSiteDelegation/HEAD/doc/glite-security-delegation-interface/DelegationInterface.html
7

Generation Leap - 
Bearer Tokens

• Outside our community, in HTTPS, authorization is expressed by a string in
a specific header.

• Referred to as bearer tokens: whoever has access to the token (“the
bearer”) has its authorizations.

• Assumes we have a private / secure communication channel (such as
HTTPS).

• Often, this is capability based not identity based. The token authorizes the
bearer to do a certain action (“write to file /store/foo inside the CMS area”);
X509 provides an identity that the site must figure out how to map (“what is
Brian Bockelman allowed to do at my site?”).

• For more in-depth discussion, see https://indico.cern.ch/event/658060/
contributions/2890286/

8

https://indico.cern.ch/event/658060/contributions/2890286/
https://indico.cern.ch/event/658060/contributions/2890286/

Bearer Tokens
• Two approaches to bearer tokens:

• Completely opaque: must coordinate with
an external agent to determine token
validity and corresponding authorization.

• Standardized schema: 3rd party can parse,
validate, and authorize from the token itself.

• For this group, we have utilize the “JSON Web
Token” format with mutually agreed-upon:

• Approach to verification.

• Interpretation of authorizations.

Sample token, decoded: 
{ 
“iss":"https://scitokens.org/cms", # Token issuer 
“scp":["write:/store/user/clundst","read:/store"], # Storage authz 
“sub":"clundst", # Subject name, for traceability. 
“jti”:"b8d54a62-cd33-4b4b-bb64-11b804272f1d", # Token ID. 
“exp":1521561382, # Expiration and validity time. 
"iat":1521557782, 
"nbf":1521557782 
}

9

Working up the Stack
• Within the WLCG Authorization Working group, we are working on a consensus on the

token profile.

• Minor changes from the existing SciToken format, but compatible in the broad brush.

• We have an initial prototype functioning as XRootD plugins.

• Stable enough to put at production servers at three different sites.

• We have handshake-level agreement from all the other “WLCG storage” elements to
implement this approach. Except for dCache, get this somewhat for free as the
XRootD layer is shared.

• dCache implementation is not from-scratch as they already utilize OIDC tokens.

• GFAL2, DAVIX, and FTS have patches in release (or testing) supporting the end-to-end.

• PhEDEx changes available as patch and Rucio changes are in a testing branch.

Working the vertical: patches across about a dozen software packages.
10

A Sunny Outlook 
(for a work in progress)

• Want to see the nitty gritty? See the parallel presentation
this afternoon:

• https://indico.cern.ch/event/658060/contributions/
2886775/

• We are just now verifying functionality of the vertical
stack.

• Looking for souls interested in doing performance studies
-

• Potentially also studying different transport protocols!

• Want to scale up to the “1 PB moved” level.

• Increasing the number of sites participating - and the
types of sites.

• This is the opening act: visit with us again at CHEP to
see how far we get!

11

https://indico.cern.ch/event/658060/contributions/2886775/
https://indico.cern.ch/event/658060/contributions/2886775/

DRINK!

12

