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“Analysis system” is a data access optimization scenario

The following are often true about end-user data analysis:

I Only need a small fraction of the event and particle attributes, like a few dozen.

(A handful of trigger flags, details on two or three particle types, maybe a veto on
another’s kinematics, but nowhere close to the thousands of available attributes.)

I Need to look at all events, if only to reject them on the basis of a few attributes.

I Frequent, repeated process; code to run not known in advance; exploratory.

Today’s pipelines were designed for a different optimization scenario: reconstruction.

Consider this request: “Please submit a GRID job to plot the muon pT spectrum.
Then we’ll think about what we want to look at next.” Is that unreasonable?
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An example of what I have in mind: Google BigQuery
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Basic block diagram

user
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reduced
output
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The “reduced output” must be small enough to download quickly (e.g. histograms or
highly skimmed tables). If not, the system ceases to be “exploratory.”

The “new sources” can be arbitrarily large and efficiently share overlapping data with
the original sources because they live in the same system.
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Basic block diagram
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So we can just use BigQuery, then?

No!!!

I Reason #1: SQL. Simple HEP problems translate into complex SQL and
moderate-to-complex HEP problems would be unreasonably difficult to express.

Non-SQL languages in this problem space, such as SparkSQL’s column
expressions or Apache Drill’s internal query language, are just as restrictive in the
ways that matter.

I Reason #2: Data model. The BigQuery paper (“Dremel”), Parquet & Drill (open
source versions of the same), Apache Arrow, and SparkSQL all describe rich,
nested data models sufficient to describe HEP events.

However, for every one of these, you quickly encounter “not implemented yet”
messages when you try to use them for HEP events.

I Reason #3: User interface. The web form is fun, but we need queries embedded
in an interactive, programmable environment with plotting and statistics libraries:
ROOT or Python or both (probably both).
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HEP is both simpler and more complex than relational analytics

HEP analysis is simpler

HEP functions never have to cross events.
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Common elsewhere: e.g. market basket analysis.
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HEP is both simpler and more complex than relational analytics

HEP analysis is more complex
HEP data are variable-length, nested data
structures, and we typically need to loop
over combinations of particles.
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In many fields, data are not considered
ready for analysis until they’re in a tabular
form. (Earlier steps are called “tidying.”)

column 1 column 2 column 3

row 1

row 2

row 3

row 4

row 5

row 6
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HEP is both simpler and more complex than relational analytics

independent events all-to-all shuffle

tabular data basic spreadsheets relational analytics

variable-length, nested data HEP analysis graph analytics
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What should our data source be?

Identically typed, variable-length, nested data can be split into columns:
I All attribute values at a given level of hierarchy are stored together and may be

retrieved independently of the rest.
I Good for reading only the dozen interesting attributes.
I ROOT has been doing this for years.

But we could take this further, the way fast databases have:

I Minimize runtime: data analysis functions have low arithmetic intensity; don’t
spend time creating objects that will be used only once!

I Minimize storage: new versions of a dataset can share (as in “symlink”) most
attributes with the old version.

I Share cache: column popularity distribution is steeper than the file popularity
distribution; most popular columns could remain in memory for all users.

I Avoid touching disk: sorted partitions do not need to be fully read if a cut is
being applied to the sorted variable (most likely pT ).
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Object Array Map: columnar, hierarchical data as runtime objects

OAMap (https://github.com/diana-hep/oamap)

√
Translates object-oriented (Python) code into nothing but array operations.

√
Extends Numba (Python compiler) to generate native machine bytecode (fast).

√
Arrays can come from anywhere: ROOT (through uproot), raw data files, remote
network calls, HDF5, etc.

The same object can have attributes served from all of the above, so an official
dataset can be served from ROOT files while a user’s modification (cuts or partial
calculations applied) can be these ROOT files augmented by raw arrays.

√
Array fetching is through an arbitrary dict-like object: may defer to disk, network,
or per-column cache.

√
OAMap has enough indirection that different particle types can be independently
sorted by their own pT s. Thus, a filter like “muon pT > X and jet pT > Y ” may
touch disk for only half the muon data and half the jet data.
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OAMap example

>>> import uproot
>>> import oamap.source.root

>>> url = "http://scikit-hep.org/uproot/examples/HZZ.root"
>>> events = uproot.open(url)["events"].oamap()
>>> events.schema.content["muons"].show()
List(

starts = ’NMuon’, # schema maps object attributes to array names
stops = ’NMuon’,
content = Record( # at all levels of nesting

fields = {
’px’: Primitive(dtype(’float32’), data=’Muon_Px’),
’py’: Primitive(dtype(’float32’), data=’Muon_Py’),
’pz’: Primitive(dtype(’float32’), data=’Muon_Pz’),
’energy’: Primitive(dtype(’float32’), data=’Muon_E’),
’charge’: Primitive(dtype(’int32’), data=’Muon_Charge’),
’isolation’: Primitive(dtype(’float32’), data=’Muon_Iso’)

}))
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OAMap example

The dataset looks like a nested Python list.

>>> events
[<Event at index 0>, <Event at index 1>, <Event at index 2>, ...,
<Event at index 2418>, <Event at index 2419>, <Event at index 2420>]

>>> events[0].muons
[<Muon at index 0>, <Muon at index 1>]

>>> [x.px for x in events[0].muons]
[-52.899456, 37.73778]

But it is generated on demand from arrays.

"NMuon": array([2, 1, 2, ..., 1, 1, 1], dtype=int32)
"Muon_Px": array([-52.899456, 37.73778, -0.81645936, ...,

-29.756786, 1.1418698, 23.913206 ], dtype=float32)
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OAMap example

It can also be included in compiled code with no change in syntax.
>>> import numpy
>>> import numba
>>> import oamap.compiler
>>> @numba.njit # declares the following function to be compiled
... def compute(events, out):
... i = 0
... for event in events: # "event" and "event.muons" are a compiler fiction
... if len(event.muons) == 2:
... mu1, mu2 = event.muons[0], event.muons[1]
... px = mu1.px + mu2.px
... py = mu1.py + mu2.py
... pz = mu1.pz + mu2.pz
... energy = mu1.energy + mu2.energy
... out[i] = sqrt(energy**2 - px**2 - py**2 - pz**2)
... i += 1

>>> out = numpy.empty(1371)
>>> compute(events, out) # compilation and array-fetching happen on first call
>>> out
array([90.22780609, 74.74654388, 89.75765991, ..., 92.06494904,

85.44384003, 75.96061707])
13 / 25



Current thinking. . .
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What should our reduced output be?

Simplest case: histograms, but that would get restrictive as analyses develop.

Here’s an idea: query server returns Pandas DataFrames.

I Until recently, I’ve had the wrong idea about what a Pandas DataFrame is:
I thought it was a TTree (set of events) with egregious limitations:

I Tabular, with little support for variable-length, nested data.

I Strictly in-memory. (Dask DataFrames implement the interface without this restriction.)

I I had been missing an important fact: most of Pandas’s functionality is in its
handling of indexes.

I TTrees/events are indexed only by entry or run/event number.

I Pandas indexes may be non-contiguous, non-numeric, intervals/durations,
multi-component, . . . , and every operation maintains consistent indexes.

I Pandas has more in common with histograms than it does with event sources.
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Just an example. . .
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Pandas generalizes what we do with histograms

import pandhist
# define bins in many dimensions; we’ll think about how to plot later
muonhist = (pandhist

.bin(100, 0, 500, "mass")

.cut("q1*q2 < 0")

.irrbin([0.2, 0.5], "mt1")

.irrbin([0.2, 0.5], "mt2")

.fillable()) # creates a fillable Pandas DataFrame

for muons, charge, mt2activity in uproot.iterate(
"RA2Analysis/*.root", "TreeMaker2/PreSelection",
["Muons", "Muons_charge", "Muons_MT2Activity"], outputtype=tuple):

for i in range(len(muons)):
if len(charge[i]) == 2:

mu1, mu2 = muons[i]
q1, q2 = charge[i]
mt1, mt2 = mt2activity[i]
# fill method has an argument for each variable
muonhist.fill((mu1 + mu2).mass, q1, q2, mt1, mt2) 17 / 25



Pandas generalizes what we do with histograms
>>> muonhist

count # in this example, count is
mass q1*q2 < 0 mt1 mt2 # the only column; the rest
[-inf, 0.0) fail [-inf, 0.2) [-inf, 0.2) 0.0 # is a hierarchical index

[0.2, 0.5) 0.0 # (mass, q1*q2 < 0, mt1, mt2)
[0.5, inf) 0.0

[0.2, 0.5) [-inf, 0.2) 0.0
[0.2, 0.5) 0.0 # if we asked for weights,
[0.5, inf) 0.0 # sumw and sumw2 would be

[0.5, inf) [-inf, 0.2) 0.0 # separate columns
[0.2, 0.5) 0.0
[0.5, inf) 0.0

pass [-inf, 0.2) [-inf, 0.2) 0.0 # if we asked for a profile,
[0.2, 0.5) 0.0 # we’d get sum(y) and sum2(y)
[0.5, inf) 0.0

[0.2, 0.5) [-inf, 0.2) 0.0
[0.2, 0.5) 0.0 # but most of the work is done
[0.5, inf) 0.0 # by the hierarchical index

[0.5, inf) [-inf, 0.2) 0.0
[0.2, 0.5) 0.0
[0.5, inf) 0.0

... ...
[1836 rows x 1 columns]
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Pandas generalizes what we do with histograms

>>> pandhist.steps("mass").data(muonhist)
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Pandas generalizes what we do with histograms

>>> pandhist.steps("mass").overlay("q1*q2 < 0").data(muonhist)

fail
pass

q1*q2 < 0
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Pandas generalizes what we do with histograms

>>> pandhist.area("mass").stack("q1*q2 < 0").data(muonhist)

fail
pass

q1*q2 < 0
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Pandas generalizes what we do with histograms

>>> pandhist.steps("mass").column("q1*q2 < 0").data(muonhist)
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Pandas generalizes what we do with histograms

>>> pandhist.steps("mass").row("mt1").column("mt2").data(muonhist)
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Pandas generalizes what we do with histograms
>>> pandhist.steps("mass").overlay("q1*q2 < 0").row("mt1").column("mt2").data(muonhist)
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What should our processing be?

Speedy, prompt start-up parallel processing is not something HEP needs to invent.

I Spark is the elephant in the room (used to be Hadoop), but it’s hard to
(efficiently) bridge our C++/Python ecosystem with the JVM.

I I considered Drill, but it’s also JVM.

I Impala is C++, but seems to be too specialized to the SQL mindset.

I Thanat Jatuphattharachat (summer student) investigated raw Zookeeper
coordination, but this is getting close to DIY.

I Dask looks like a good choice: it’s in the C++/Python world, general enough to
piece together what we need out of basic parts.

(More about this in the concurrency session.)
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What should our data storage be?

Again, no need for HEP to invent.

I Using columns, rather than files, as the fundamental unit means keeping track of
a much larger number of named entities.

I Object stores scale to larger namespaces than filesystems by providing fewer
operations (listing, directory structure), which we don’t need for this project.

I Ceph is both an object store and a filesystem, and it minimizes metadata
overhead by coordinating data placement through a static function, rather than a
dynamic service.

I Lets us experiment both ways.
I We could use the static function to place executable tasks, improving data locality. . .

23 / 25



What should our data storage be?

Again, no need for HEP to invent.

I Using columns, rather than files, as the fundamental unit means keeping track of
a much larger number of named entities.

I Object stores scale to larger namespaces than filesystems by providing fewer
operations (listing, directory structure), which we don’t need for this project.

I Ceph is both an object store and a filesystem, and it minimizes metadata
overhead by coordinating data placement through a static function, rather than a
dynamic service.

I Lets us experiment both ways.
I We could use the static function to place executable tasks, improving data locality. . .

23 / 25



What should our data storage be?

Again, no need for HEP to invent.

I Using columns, rather than files, as the fundamental unit means keeping track of
a much larger number of named entities.

I Object stores scale to larger namespaces than filesystems by providing fewer
operations (listing, directory structure), which we don’t need for this project.

I Ceph is both an object store and a filesystem, and it minimizes metadata
overhead by coordinating data placement through a static function, rather than a
dynamic service.

I Lets us experiment both ways.
I We could use the static function to place executable tasks, improving data locality. . .

23 / 25



What should our data storage be?

Again, no need for HEP to invent.

I Using columns, rather than files, as the fundamental unit means keeping track of
a much larger number of named entities.

I Object stores scale to larger namespaces than filesystems by providing fewer
operations (listing, directory structure), which we don’t need for this project.

I Ceph is both an object store and a filesystem, and it minimizes metadata
overhead by coordinating data placement through a static function, rather than a
dynamic service.

I Lets us experiment both ways.
I We could use the static function to place executable tasks, improving data locality. . .

23 / 25



What should our data storage be?

Again, no need for HEP to invent.

I Using columns, rather than files, as the fundamental unit means keeping track of
a much larger number of named entities.

I Object stores scale to larger namespaces than filesystems by providing fewer
operations (listing, directory structure), which we don’t need for this project.

I Ceph is both an object store and a filesystem, and it minimizes metadata
overhead by coordinating data placement through a static function, rather than a
dynamic service.

I Lets us experiment both ways.
I We could use the static function to place executable tasks, improving data locality. . .

23 / 25



Current thinking. . .

Python
function Dask

Pandas
DataFrame

ROOT/array
OAMap

outside inside

new
arrays

24 / 25



Current thinking. . .

Python
function Dask

Pandas
DataFrame

OAMap
via Ceph

outside inside

new
arrays

24 / 25



Conclusions

Though an analysis service should use as many open source parts as possible, some
functionality is missing and we need to build our own.

Software products developed along the way:

uproot Quickly access ROOT branches as arrays. mature, in use

oamap Translate between object-oriented Python and low-level
array operations.

ready for testing

pandhist Reinterpretation of Pandas DataFrames as super-
histograms. (Plotting in Vega-Lite.)

experimental

vegascope Browser-based TCanvas for Vega/Vega-Lite, so that you
don’t have to use Jupyter if you don’t want to.

done (simple)

? OAMap as a collection in Dask.

? Column manager (for sharing data among datasets).

? All-in-one environment for query-based analysis.
25 / 25

https://github.com/scikit-hep/uproot
https://github.com/diana-hep/oamap
https://github.com/diana-hep/pandhist
https://github.com/diana-hep/vegascope

