
Reducing CPU Consumption of
Geant4 Simulation in ATLAS
John Chapman (University of Cambridge)
on behalf of the ATLAS Simulation Group

Joint WLCG & HSF Workshop 2018
Napoli, Italy - 28th March 2018

Current Situation

2

Setting the scene

The largest component of ATLAS CPU time is spent
on Geant4 Simulation. This will continue to be the
case into LHC Run 3 due to the increased simulation
demands.
Speeding up our simulation will allow for the
production of larger Monte Carlo statistics.
Increasing statistics will increase the precision of
physics analyses by reducing the statistical error,
with only a slight increase to the systematic error if
approximations are used.

3

Setting the scene

The regions of the detector which take the most time during simulation are determined by particle flux and geometry
complexity. The EM Endcap dominates (the CPU requirements of the FCAL are suppressed due to the use of Frozen
Showers in that region of the detector).

4

Speed-ups already
in place
● Frozen Showers in FCAL
● AtlasRK4 Stepper
● 250ns neutron time cut
● Only simulate primary

particles with |η| < 6.0

Configuration MinBias ttbar

Nominal production configuration: shower libraries
in the forward calorimeter, nominal range cuts,
NystromRK4 stepper, FTFP_BERT_ATL physics
list, 250ns neutron time cut, simulation of primary
particles with pseudo-rapidity below 6.0

1.0 1.0

No shower libraries 1.5 1.3

ClassicalRK4 stepper instead of NystromRK4 1.09 1.07

No neutron time cut 1.02 1.01

Table 4: Performance of various configurations of the ATLAS simulation
for minimum bias and ttbar production events. The Geant4 version used
for this test was G4 10.2p03. No significant performance improvements
were introduced in patch 03 with respect to patch 02. (Taken from
Detector Simulation White paper.)

5

Improvements under-investigation

6

ATLAS Strategy

Category 1:
● Improved G4Solid implementations.
● Optimize choice of G4Solids used to create

given volumes.
● Big Library (static-linking)
● Profile-guided optimization.

Category 2:
● Geometry Simplification?
● Hadronic cross-section tables
● More aggressive G4 cuts.
● Russian roulette for neutrons.

Will discuss some of these on the following slides.

There are two ways to speed up the simulation:

1. Do the same thing, but faster. (Simulation
output unchanged.)

2. Do something simpler. (Simulation output
changes.)

Speed-ups in category 2 require much more careful
validation, so we prefer to focus on improvements
in category 1 first.

7

Detector geometry
optimization

There are two principal
directions in the detector
geometry optimization:

● Enhancement of Geant4 solids by
taking into account the specifics
of the shapes used in the detector
geometry description.

● Simplification (optimization) of the
detector geometry description
itself.

8

Detector geometry: Main shapes

Main shapes used in the ATLAS geometry description
● Box – 11814 solids

- 7756 boxes have volume < 1 cm3

- of those 472 have volume < 1 mm3

● Trd – 26310 solids
Only one(!) Trd solid has general shape, all
others have specific shapes:
- 9331 are boxes, that can be easily detected
and used in GeoModel
- 16944 have parallel X sides
- 34 have parallel Y sides

● Tube – 6774 solids
- 798 tubes have volume < 1 cm3

- of those 123 have volume < 1 mm3

Elimination of small (thin) objects may give
essential improvement in performance. For
example, elimination of the glue layers gives up to
30% speed up in the simulation of the Tile
calorimeter. (Effect on physics to be evaluated.)

Recent Geant4 10.4 provides revised
implementation of G4Box, G4Trd and G4Trap.
Revised G4Trap has several internal specializations.
Similarly, specializations can be introduced for
G4Trd.

Revised solids have been used in the ATLAS custom
version of Geant4 based on Geant4 10.1.p03. It
gave ~4% improvement in the performance. 9

Detector geometry: Boolean volumes

Boolean solids do not have internal optimisation.
The time required for calculations in boolean solids
scales at best with the number of components,
often worse than this in fact because of rather
complicated logic of the calculations.

Received wisdom in ATLAS was that descriptions
using Boolean Solids were more robust than
equivalent descriptions using Extruded Solids.

This is no longer the case and Extruded Solids are
usually more performant.

Below is a list of boolean volumes in different parts
of the Atlas detector:

● Inner Detector – 465 boolean volumes
○ 3 volumes are composed of 42 components,

others are composed of 2 – 11 components.
● Tile Calorimeter – 15863 boolean volumes

○ Almost all boolean solids can be replaced with
Extruded Solids. (In progress)

● Muon System – 2869 boolean volumes
○ >170 volumes have 30 - 82 components.

10

Detector geometry: Overlaps

The existence of overlaps in the detector geometry
description means that there are some issues in the
geometry definition that may lead to incorrect result
of the simulation.

Geant4 tracking algorithms are quite sensitive to
overlaps, which can be the cause of various issues
during tracking. I.e. skipping of material, stuck
tracks, etc.

Below is the result of overlap check in the GDML
dumps:

● Inner Detector – 1983 overlaps
● Calorimeters – 172 overlaps
● Muon System – 332 overlaps

A number of fake overlaps have been observed in
the Tile calorimeter geometry.

If the result of a boolean operation (subtraction or
intersection) is a null object, the Geant4 overlap
check may report an overlap. In such a case the
warning message on overlap will be preceded by a
warning message on a failure to pick up a random
point on the surface of the object.

Null objects do not create problems for tracking,
however it indicates that the geometry description
can be improved.

11

4%
From new G4Solid classes.

Potentially more from both optimizing the choices of G4Solid classes
used and from simplifying the description.

12

Big library

Geant4 stand-alone applications shows 20%
improvement with static builds (the larger the
number of threads the higher the benefit).

Got even better with KNL (interesting for CORI).

Cannot use a full static build w/ Athena, but:
1. Compile G4 in “static mode” (e.g. *.a libs)
2. Create a single large *.so library with all

athena packages that depend on G4 and
libG4*.a

D. Smith (CERN IT) has shown that a ~10% gain can
still be achieved with grouping all code in a single
.so library.

Similar strategy, based on this work, has been
already adopted by CMS with said 10% gain.

13

https://www.dropbox.com/s/uapsf9rplruff0u/Static%20Vs%20Shared.pdf?dl=0
https://indico.cern.ch/event/621867/

Big library: Strategy

1. Identify all packages which depend on G4.
2. Compile G4 external in static mode (e.g. create .a archives).
3. For all the packages identified by (1) modify CMakeLists.txt to create a cmake library of OBJECT type.
4. Create a meta-package that will create the big library using all OBJECT libraries and static link from G4.

atlas_subdir(PkgA)
atlas_add_library(PkgA

src/*.cxx
[...]
OBJECT)

// ...

PkgA/CMakeLists.txt

atlas_subdir(PkgB)
atlas_add_library(PkgB

src/*.cxx
[...]
OBJECT)

// ...

PkgB/CMakeLists.txt

atlas_subdir(PkgC)
atlas_add_library(PkgC

[...]
OBJECT_LIBRARIES
PkgA
PkgB)

// ...

PkgC/CMakeLists.txt

14

~10%
Improvement should be orthogonal to others.

15

Study of AutoFDO in ATLAS Simulation.

The use of this tool has already been investigated in
CMS simulation workflows and has shown a 10%
improvement (NB using statically-linked libraries).

Aiming to achieve at least a 5% improvement in
simulation time in ATLAS Simulation. In that case it
will be considered for use in production release
builds.

The official version of AutoFDO did not seem to
work for us, so we are using our own patched
version.

Hope to have some results soon.
16

AutoFDO (Feedback-Directed Optimization) is an
optimization technique available in Linux which
provides performance gains and is able to collect
profile data on production system.

It uses sampling - based profile collected using the
perf tool to drive feedback directed optimizations.

A standalone tool is used to convert the perf.data
file into gcov format. gcc reads in the gcov file and
interprets the profile into a set of hashmaps.

https://github.com/amete/autofdo
https://github.com/amete/autofdo

Geant4MT in
AthenaMT

● Chip manufacturers are producing
evermore highly parallelized
devices - we have to take
advantage of this.

● ATLAS can now run a complete
simulation setup using Geant4MT
in multi-threaded Athena
(AthenaMT).

● Now in the process of
stress-testing the code to check
for race-conditions and evidence
of non-reproducibility.

17

Geant4MT in AthenaMT: Application details

● Composition model of Gaudi/Athena components that create + manage thread-local G4 components

● Thread-local workspaces setup via new thread initialization tool framework mechanism
● Processing algorithms are cloned to execute on different events concurrently
● One instance of the output stream algorithm (StreamHITS) services all worker threads. Now being replaced

by a SharedWriter which can handle multiple threads in parallel to avoid a bottleneck.

18

Future/ Other work ● Optimizations which will affect physics results:
○ More aggressive Geant4 cuts
○ Switch of B-Field in Calo (except for Muons).
○ Russian roulette for neutrons
○ Fast hadronic cross-section lookup with

precomputed mapping information.
○ Geometry simplification.

● May not be possible if precision loss is too high.
● Manual tuning like strength reduction:

division→multiplication, sin()→polynomials
● In parallel with speeding up Geant4 Simulation

in ATLAS, we are working hard on an improved
Fast Calorimeter Simulation (FastCaloSim V2)
and a Fast Chain incorporating fast simulation,
fast digitization and fast reconstruction
techniques. (This would be a whole talk itself.)

19

Summary

● ATLAS is pursuing a number of strategies to
speed up our Geant4 Simulation jobs.

● Working with Geant4 experts we are
incorporating G4Solid improvements into our
production version of Geant4. This should
gain us 4%.

● The Big Library concept (all Athena code with
Geant4 dependencies is compiled into a
single library and statically-linked against
Geant4) should gain us an additional 10%.

○ Will go into the current production release
when possible.

● Profile-guided optimization using AutoFDO is
being investigated. This could potentially gain
us another 10%.

● Optimizing how our detector geometry is
constructed could gain a few more percent.

○ E.g. Removal of Tile Calorimeter glue volumes
could save ~1% overall.

○ This will be for Run 3 campaigns though.
● Geant4MT working in AthenaMT

○ This will be for Run 3 campaigns, but we are
testing it on the grid already.

● Many other ideas, which will change physics
output and therefore need to be considered
more carefully.

● Alternative Fast Calorimeter Simulation
actively in development and Fast Chain option
to also being developed.

20

Thanks to...

● A. Dotti, S. Farrell, C. Macron, E. Tcherniaev and Y. Wang for providing material for this talk
● Others in the ATLAS Simulation Group for helpful suggestions.

21

Backups

22

Reminder: Why
we do that?

Static builds provide +20%
performances

Cannot use w/ Athena a full
static build, but:

1) Compile G4 in “static
mode” (e.g. *.a libs)

2) Create a single large *.so
library with all athena
package that depends on
G4 and libG4*.a

Requires
physics
re-validation

23

CPU Fraction by particle species

24

Monte Carlo Production Chain

25

