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Current Situation
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Setting the scene

The largest component of ATLAS CPU time is spent 
on Geant4 Simulation. This will continue to be the 
case into LHC Run 3 due to the increased simulation 
demands.
Speeding up our simulation will allow for the 
production of larger Monte Carlo statistics. 
Increasing statistics will increase the precision of 
physics analyses by reducing the statistical error, 
with only a slight increase to the systematic error if 
approximations are used.
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Setting the scene

The regions of the detector which take the most time during simulation are determined by particle flux and geometry 
complexity. The EM Endcap dominates (the CPU requirements of the FCAL are suppressed due to the use of Frozen 
Showers in that region of the detector).
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Speed-ups already 
in place 
● Frozen Showers in FCAL
● AtlasRK4 Stepper
● 250ns neutron time cut
● Only simulate primary 

particles with |η| < 6.0

Configuration MinBias ttbar

Nominal production configuration: shower libraries 
in the forward calorimeter, nominal range cuts, 
NystromRK4 stepper, FTFP_BERT_ATL physics 
list, 250ns neutron time cut, simulation of primary 
particles with pseudo-rapidity below 6.0

1.0 1.0

No shower libraries 1.5 1.3

ClassicalRK4 stepper instead of NystromRK4 1.09 1.07

No neutron time cut 1.02 1.01

Table 4: Performance of various configurations of the ATLAS simulation 
for minimum bias and ttbar production events. The Geant4 version used 
for this test was G4 10.2p03.  No significant performance improvements 
were introduced in patch 03 with respect to patch 02. (Taken from 
Detector Simulation White paper.)
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Improvements under-investigation
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ATLAS Strategy

Category 1:
● Improved G4Solid implementations.
● Optimize choice of G4Solids used to create 

given volumes.
● Big Library (static-linking)
● Profile-guided optimization.

Category 2:
● Geometry Simplification?
● Hadronic cross-section tables
● More aggressive G4 cuts.
● Russian roulette for neutrons.

Will discuss some of these on the following slides.

There are two ways to speed up the simulation:

1. Do the same thing, but faster. (Simulation 
output unchanged.)

2. Do something simpler. (Simulation output 
changes.)

Speed-ups in category 2 require much more careful 
validation, so we prefer to focus on improvements 
in category 1 first.
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Detector geometry 
optimization

There are two principal 
directions in the detector 
geometry optimization:

● Enhancement of Geant4 solids by 
taking into account the specifics 
of the shapes used in the detector 
geometry description.

● Simplification (optimization) of the 
detector geometry description 
itself.
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Detector geometry: Main shapes

Main shapes used in the ATLAS geometry description
● Box – 11814 solids

- 7756 boxes have volume < 1 cm3

- of those 472 have volume < 1 mm3

● Trd – 26310 solids
Only one(!) Trd solid has general shape, all 
others have specific shapes:
- 9331 are boxes, that can be easily detected 
and used in GeoModel
- 16944 have parallel X sides
- 34 have parallel Y sides

● Tube – 6774 solids
- 798 tubes have volume < 1 cm3

- of those 123 have volume < 1 mm3

Elimination of small (thin) objects may give 
essential improvement in performance. For 
example, elimination of the glue layers gives up to 
30% speed up in the simulation of the Tile 
calorimeter. (Effect on physics to be evaluated.)

Recent Geant4 10.4 provides revised 
implementation of G4Box, G4Trd and G4Trap. 
Revised G4Trap has several internal specializations. 
Similarly, specializations can be introduced for 
G4Trd.

Revised solids have been used in the ATLAS custom 
version of Geant4 based on Geant4 10.1.p03. It 
gave ~4% improvement in the performance. 9



Detector geometry: Boolean volumes

Boolean solids do not have internal optimisation. 
The time required for calculations in boolean solids 
scales at best with the number of components, 
often worse than this in fact because of rather 
complicated logic of the calculations.

Received wisdom in ATLAS was that descriptions 
using Boolean Solids were more robust than 
equivalent descriptions using Extruded Solids.

This is no longer the case and Extruded Solids are 
usually more performant.

Below is a list of boolean volumes in different parts 
of the Atlas detector:

● Inner Detector – 465 boolean volumes
○ 3 volumes are composed of 42 components, 

others are composed of 2 – 11 components.
● Tile Calorimeter – 15863 boolean volumes

○ Almost all boolean solids can be replaced with 
Extruded Solids. (In progress)

● Muon System – 2869 boolean volumes
○ >170 volumes have 30 - 82 components.
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Detector geometry: Overlaps

The existence of overlaps in the detector geometry 
description means that there are some issues in the 
geometry definition that may lead to incorrect result 
of the simulation.

Geant4 tracking algorithms are quite sensitive to 
overlaps, which can be the cause of various issues 
during tracking. I.e. skipping of material, stuck 
tracks, etc.

Below is the result of overlap check in the GDML 
dumps:

● Inner Detector – 1983 overlaps
● Calorimeters – 172 overlaps
● Muon System – 332 overlaps

A number of fake overlaps have been observed in 
the Tile calorimeter geometry.

If the result of a boolean operation (subtraction or 
intersection) is a null object, the Geant4 overlap 
check may report an overlap. In such a case the 
warning message on overlap will be preceded by a 
warning message on a failure to pick up a random 
point on the surface of the object.

Null objects do not create problems for tracking, 
however it indicates that the geometry description 
can be improved.
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4%
From new G4Solid classes. 

Potentially more from both optimizing the choices of G4Solid classes 
used and from simplifying the description.
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Big library

Geant4 stand-alone applications shows 20% 
improvement with static builds (the larger the 
number of threads the higher the benefit).

Got even better with KNL (interesting for CORI).

Cannot use a full static build w/ Athena, but:
1. Compile G4 in “static mode” (e.g. *.a libs)
2. Create a single large *.so library with all 

athena packages that depend on G4 and 
libG4*.a

D. Smith (CERN IT) has shown that a ~10% gain can 
still be achieved with grouping all code in a single 
.so library.

Similar strategy, based on this work, has been 
already adopted by CMS with said 10% gain.
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https://www.dropbox.com/s/uapsf9rplruff0u/Static%20Vs%20Shared.pdf?dl=0
https://indico.cern.ch/event/621867/


Big library: Strategy

1. Identify all packages which depend on G4.
2. Compile G4 external in static mode (e.g. create .a archives).
3. For all the packages identified by (1) modify CMakeLists.txt to create a cmake library of OBJECT type.
4. Create a meta-package that will create the big library using all OBJECT libraries and static link from G4.

atlas_subdir( PkgA )
atlas_add_library( PkgA 

src/*.cxx
[...]
OBJECT )

// ...

PkgA/CMakeLists.txt

atlas_subdir( PkgB )
atlas_add_library( PkgB 

src/*.cxx
[...]
OBJECT )

// ...

PkgB/CMakeLists.txt

atlas_subdir( PkgC )
atlas_add_library( PkgC 

[...]
OBJECT_LIBRARIES
PkgA
PkgB )

// ...

PkgC/CMakeLists.txt
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~10%
Improvement should be orthogonal to others.
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Study of AutoFDO in ATLAS Simulation.

The use of this tool has already been investigated in 
CMS simulation workflows and has shown a 10% 
improvement (NB using statically-linked libraries).

Aiming to achieve at least a 5% improvement in 
simulation time in ATLAS Simulation. In that case it 
will be considered for use in production release 
builds.

The official version of AutoFDO did not seem to 
work for us, so we are using our own patched 
version.

Hope to have some results soon.
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AutoFDO (Feedback-Directed Optimization) is an 
optimization technique available in Linux which 
provides performance gains and is able to collect 
profile data on production system.

It uses sampling - based profile collected using the 
perf tool to drive feedback directed optimizations.

A standalone tool is used to convert the perf.data 
file into gcov format. gcc reads in the gcov file and 
interprets the profile into a set of hashmaps.

https://github.com/amete/autofdo
https://github.com/amete/autofdo


Geant4MT in 
AthenaMT

● Chip manufacturers are producing 
evermore highly parallelized 
devices - we have to take 
advantage of this.

● ATLAS can now run a complete 
simulation setup using Geant4MT 
in multi-threaded Athena 
(AthenaMT).

● Now in the process of 
stress-testing the code to check 
for race-conditions and evidence 
of non-reproducibility.

17



Geant4MT in AthenaMT: Application details

● Composition model of Gaudi/Athena components that create + manage thread-local G4 components 

● Thread-local workspaces setup via new thread initialization tool framework mechanism 
● Processing algorithms are cloned to execute on different events concurrently 
● One instance of the output stream algorithm (StreamHITS) services all worker threads.  Now being replaced 

by a SharedWriter which can handle multiple threads in parallel to avoid a bottleneck.
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Future/ Other work ● Optimizations which will affect physics results:
○ More aggressive Geant4 cuts
○ Switch of B-Field in Calo (except for Muons).
○ Russian roulette for neutrons
○ Fast hadronic cross-section lookup with 

precomputed mapping information.
○ Geometry simplification.

● May not be possible if precision loss is too high.
● Manual tuning like strength reduction: 

division→multiplication, sin()→polynomials
● In parallel with speeding up Geant4 Simulation 

in ATLAS, we are working hard on an improved 
Fast Calorimeter Simulation (FastCaloSim V2) 
and a Fast Chain incorporating fast simulation, 
fast digitization and fast reconstruction 
techniques. (This would be a whole talk itself.)
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Summary

● ATLAS is pursuing a number of strategies to 
speed up our Geant4 Simulation jobs.

● Working with Geant4 experts we are 
incorporating G4Solid improvements into our 
production version of Geant4. This should 
gain us 4%.

● The Big Library concept (all Athena code with 
Geant4 dependencies is compiled into a 
single library and statically-linked against 
Geant4) should gain us an additional 10%.

○ Will go into the current production release 
when possible.

● Profile-guided optimization using AutoFDO is 
being investigated. This could potentially gain 
us another 10%.

● Optimizing how our detector geometry is 
constructed could gain a few more percent.

○ E.g. Removal of Tile Calorimeter glue volumes 
could save ~1% overall.

○ This will be for Run 3 campaigns though.
● Geant4MT working in AthenaMT

○ This will be for Run 3 campaigns, but we are 
testing it on the grid already.

● Many other ideas, which will change physics 
output and therefore need to be considered 
more carefully.

● Alternative Fast Calorimeter Simulation 
actively in development and Fast Chain option 
to also being developed.
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Thanks to...

● A. Dotti, S. Farrell, C. Macron, E. Tcherniaev and  Y. Wang for providing material for this talk
● Others in the ATLAS Simulation Group for helpful suggestions.
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Backups
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Reminder: Why 
we do that?

Static builds provide +20% 
performances

Cannot use w/ Athena a full 
static build, but:

1) Compile G4 in “static 
mode” (e.g. *.a libs)

2) Create a single large *.so 
library with all athena 
package that depends on 
G4 and libG4*.a

Requires 
physics
re-validation
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CPU Fraction by particle species
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Monte Carlo Production Chain
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