
Geant4 on HPC systems

Andrea Dotti for the Geant4 collaboration (adotti@slac.stanford.edu) ;
Fundamental Interactions /Advanced Modeling Solutions

http://www.geant4.org

1

mailto:adotti@slac.stanford.edu
http://www.geant4.org/

Introduction

Parallelization results:
1. Multi-threading latest results
2. Towards HPC: MPI inclusion
3. Results on Mira@ANL

Simplifying migration: use of containers

Conclusions

Outlook

2

Introduction

3

To use HPC systems:

1. Introduce multithreading parallelism (DONE)
2. Introduce multi-process parallelism (DONE)
3. Study strategy to distribute code efficiently (DONE)
4. Leverage accelerators (BEING STUDIED)

Leveraging HPC needs success in all areas

Will anyway benefit also traditional systems (GRIDs)

The path forward

4

Geant4 Strategy for parallelism

Core

Core

Node

User Interface Application

MPI

thread

Algorithms
improvements

thread

Algorithms
improvements

MPI

thread

Algorithms
improvements

thread

Algorithms
improvementsWe provide defaults for all level of parallelism, users can overwrite with experiment framework

specific technologies
E.g. LHC experiments: GRID instead of MPI, TBB instead of pthread

5

Multi-threading

6

Memory reduction
Version Initial memory Memory/thread
9.6 (no MT) 113 MB (113 MB)
10.0.p02 (no MT) 170 MB (170 MB)
10.0.p02 151 MB 28 MB
10.4 148 MB 11 MB

Memory limit for
Intel Xeon Phi 3120A

Geant4 MT design principle: share
between threads read-only data
(geometry, physics tables):
lock-free event loop

Goal: substantially reduce
memory usage w.r.t. pure
multi-process application (e.g.
MPI) to allow all cores to be
used

Recent feedback from CMS: full
CMSSW sw stack of ttbar events:
~200MB/thread

Includes all user-code
Needs KNL for moderate/large
number of threads

HepExpMT benchamrk: Simplified CMS geometry (via GDML), uniform B-Field, 50 GeV π- w/ FTFP_BERT7

https://agenda.infn.it/contributionDisplay.py?contribId=107&confId=11196

Linearity speedup

Number of events/second is the most
important metric for users

Very good linearity (>93%) with the
number of physical cores available

Benefits from hyper-threading: ~30%

Verified for different types of
applications:
Medical physics applications
HEP experiments

KNL 7210, quadrant mode, MCDRAM only

Strong Scaling

Access to KNL processor provided by Colfax International

HepExpMT benchmark: Simplified CMS geometry (via GDML), uniform B-Field, 50 GeV π- w/ FTFP_BERT

8

Towards HPC: MPI

9

MPI and Geant4

Rank#0

Rank#1

Thread 1

Thread 2

Rank#2

Thread 1

Thread 2

Rank#3

Thread 1

Thread 2

Thread 3

Rank#0 broadcasts UI
commands and RNG
seeds
Workers send back results
for merging: histograms,
ntuples, hits

Each node (rank) executes
MT job

All processes are “clones”
of the master

10

Geant4 applications from MPI point of view

G4Application
Rank #

UI Commands / macro file

RNG
Seed

Data Base
files

g4analsyis
histos

g4analysis
ntuple files

user-defined
G4Run

Visualization

command
line scorers

MPI “wrapper” exist, I/O merged MPI “wrapper” planned (2018+)
11

Results on MIRA@ANL

12

ATLAS: “[...] to help address this [CPU resources] shortage, we propose to move 75%
of US ATLAS CPU intensive simulation production tasks to ASCR HPC facilities.”

General characteristics of HPC: millions of tightly interconnected cores with a relatively
small ratio memory/cores.

(Detector) Simulations are ideal use-cases of HPC: little input/output w.r.t. number
crunching, embarrassingly parallel (e.g. fill “holes” in HPC with smaller productions)

Requirements and Achievements:
1. substantially reduce thread-memory usage: obtained factor 10 reduction
2. scale linearly to very large number of threads: 3 millions concurrent threads

using full MIRA@ANL w/ MPI+MT
3. opportunistic computing (fill “holes”)

with checkpointing

Core
Core

Node

User Interface Application

MPI

thread thread

MPI

thread thread

Geant4 Parallelization Strategy 13

https://docs.google.com/document/d/1sjsGPX6eW8l_pm8J5ru36EyGgqO03Lw0IuM5Sbq5DQQ/edit?usp=sharing

Preparing for Next Generation SC

Testing Geant4 at Mira@ANL (BlueGene/Q) with
up to 3 million threads

Scaling up to 64k threads, above that hit scaling limit

− Due to limitations in I/O, need to aggregate
access to disk, cout/cerr

Special test suppressing all output: mostly recovered
saturation up to 3 million threads

Results (eff>80%) confirmed on smaller systems
(Tachyon2@KISTI)

We are on the good path to scale to O(106) threads
provided we manage to address I/O

Courtesy of T. LeCompte ALCF (at ANL)

★ Vesta (x2 I/O nodes w.r.t. Mira), smaller # of
nodes
♦ Mira (nodes w/o I/O), very large partitions

1 node = 16 BlueGene/Q cores @ 1.6 GHz

Preliminary

14

OUT OF THE
BOX: no I/O
optimizations

https://agenda.infn.it/contributionDisplay.py?contribId=9&confId=11196

Beside the obvious lack of explicit vectorization (very difficult on O(2M) LOC with
physics models, not yet managed after several years of R&D)

● HepExMT@Mira limited by I/O (cout: 100B/event)

● Legacy RNG Engine from CLHEP are not designed for very large parallel
systems. Getting close to their limits (exhaust seed state). New MixMax solves
issue (to become default soon)

● Reduction of results at the end of the job needs attention: on very large
systems, binary tree merging of histograms

● Geant4 “DataBases” (i.e. granular small data-files ~1.5GB organized by Atom
{Z,A}) needs to be completely reviewed: at least reduce their granularity (ideally
a single large file), real DB MPI-aware distribution of data?

Lessons Learned & challenges for the future:

15

Simplifying porting

16

docker vs singularity vs shifter

Docker: per-profit company, that open sourced the
technology (well, the technology is in linux since long...)

Singularity: compatible with docker, tries to address some
docker security concerns. Developed by scientists for
scientists (at Berkeley)

Shifter: compatible with docker, developed for HPC
systems (at NERSC/Berkeley). Not really for public use
(yet?)

As long as you create images in docker format you
can always use them in singularity or shifter

17

Done, images available on Docker Hub

Conclusions

18

Geant4 and HPC

The introduction of MT has been the first successful step towards the use of
HPC

In the last ~2 years we have focused on understanding parallelization across
nodes. Success integration of MPI

Last year we have experimented with containers as a way to distribute G4
workloads. Very positive results

Short-term plans (all being addressed): Geant4 “DataBase” distribution,
cerr/cout merging at very large scales

Use of hybrid machines remains a concern: how to efficiently use
accelerators? Only very specialized workloads have shown promising results

19

20

HepExpMT: Geant4 “miniApp”
SLAC/LBL/NERSC
collaboration
(presented at
IEEE/NSS 2015):
 S. Farrell, A. Dotti

To be used as a “public
candle” for Geant4
performance
measurement

http://ieeexplore.ieee.org/document/7581868/

https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4HepExpMTBenchmark 20

http://ieeexplore.ieee.org/document/7581868/
https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4HepExpMTBenchmark

