
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

First steps on vectorization of
LArSoft simulation readout

Guilherme Lima, Gianluca Petrillo, Erica Snider
Fermi National Accelerator Laboratory (USA)

HSF Workshop – Simulation Section
Napoli, Italy, March 26-29, 2018

G. Lima2018-03-28 - HSF Workshop @Napoli2

Outline
● SIMD vectorization

– why: faster sim infrastructure into LArSoft
– how: veccore types + vectorized algorithms

● Plans
– use profling to search for good candidates
– simple LArSoft algorithms as basis for

vectorization tests and benchmarks
– evaluate gains and needed changes

● Perspectives

G. Lima2018-03-28 - HSF Workshop @Napoli3

Vectorization libraries
● Vectorization libraries provide high level types to explicitly

leverage SIMD vectorization without sacrifcing portability,
readability or maintainability

● User code is written in terms of vectorized types and preprocessor
macros provided by vectorization library

● Undesired issue: strong dependence on a third-party vectorization
library
– mitigated using VecCore

(see next slides)

● Examples of libraries:
– M.Kretzman’s Vc library
– P.Karpinski’s

Ume::SIMD library
– Agner Fog’s

Vector Class library
– several others

User code

Vectorization library

Classes

Basic types

Vector types

Algorithms

Basic functions

Vector functions

Basic functions

Basic vector opsBase vector types

https://github.com/VcDevel/Vc
https://github.com/edanor/umesimd
http://www.agner.org/optimize/vectorclass/read.php?i=2

G. Lima2018-03-28 - HSF Workshop @Napoli4

Introducing VecCore

● Developed within GeantV project, then integrated into ROOT

● Provides a uniform interface for SIMD vectorization

– Backends form a coherent set of types to be used together

– Arithmetics, comparisons, logical operators

– Vectorized math functions

– Masking/blending operations

– Gather/Scatter operations

– Support for multiple architectures without code duplication

● Supports multiple backend implementations

– Scalar/CUDA

– Vc Library — https://github.com/VcDevel/Vc

– UME::SIMD — https://github.com/edanor/umesimd

● See these slides for more information about VecCore

https://github.com/VcDevel/Vc
https://github.com/edanor/umesimd
https://indico.cern.ch/event/570876/contributions/2347250/attachments/1359720/2057229/Portable-SIMD-and-the-VecCore-Library-2016-10-24.pdf

G. Lima2018-03-28 - HSF Workshop @Napoli5

Introducing VecCore

generic
vector types

Intrinsics Vc libraryIntrinsics UME::SIMD
library

VecCore

generic
vector opers

vectorized
utilities

vectorized
geometry

GeantV

vectorized
algorithms

vectorized
data structs

LArSoft

vectorized
algorithms

G. Lima2018-03-28 - HSF Workshop @Napoli6

VecCore details
● Source: http://github.com/root-project/veccore
● Generic vectorized types

– Real_v, Float_v, Double_v, Int_v, Int16_v, Int32_v, Int64_v, UInt_v, …, UInt64_v

→ relevant algorithms re-written in terms of these generic vectorized types
● Vectorized operations

– Arithmetics, MaskedAssign(), Blend(), IsFull(), isEmpty(), EarlyReturnsAllowed()
● Implementation backends

– Scalar, ScalarWrapper
– VcScalar, VcVector, VcSimdArray<N>
– UMESimd, UMESimdArray<N>

● Implementation is selected at compilation time via CMake switches (if supported
by the system)

● -DVC=[ON|off -DUMESIMD=[on|OFFf -DCUDA=[on|OFFf

● Note that carefully designed programs can use multiple backends at the same
time (e.g. quadratic solver benchmark under veccore/bench/)

● Also supports GPUs (through CUDA)

● See these slides for more information about veccore

http://github.com/root-project/veccore
https://indico.cern.ch/event/570876/contributions/2347250/attachments/1359720/2057229/Portable-SIMD-and-the-VecCore-Library-2016-10-24.pdf

G. Lima2018-03-28 - HSF Workshop @Napoli7

Choosing good vectorization candidates
● Some profling performed on LArSoft code by S.Y.Jun (FNAL)
● Started search in signal processing and hit fnding algorithms

– profling results from Soon Y. Jun
● look at detsim numbers on the proton_6GeV job, listed by functions (FUNS):

– 9.9% IdealAdcSimulator::count(…)
– 9.8% Legacy35tZeroSuppressService::flter(...)
– 6.7% ExponentialChannelNoiseService::addNoise(…)
 (…)

● All good candidates, but they are DUNE experiment code, not LArSoft

http://g4cpt.fnal.gov/LArSoft.html

G. Lima2018-03-28 - HSF Workshop @Napoli8

How is GetDist2(…) CPU time?

CPI metric (not CPU time!)

dupetpc_06_57_00 LArSoft/Dune-FD (prodgenie_nue-dune10kt_1x2x6 reco)

G. Lima2018-03-28 - HSF Workshop @Napoli9

PMAlg::Segment3D::GetDist2(...)

Vector arithmetics are usually
easy to SIMD-vectorize.
Created a vectorized version of this
function (see next slide)
and a benchmark for comparisons

G. Lima2018-03-28 - HSF Workshop @Napoli10

Generic (vectorized) GetDist2(…) function
templated on a FP type → scalar type (float, double), or
 vector type (Float_v, Double_v)

consts help compiler optimizations

avoid divisions by zero
without adding if(cond)

masks used as conditions...

...in MaskedAssigns
to replace if(cond)

This version with vector types processes large numbers of points 3x faster!

G. Lima2018-03-28 - HSF Workshop @Napoli11

Current status
● A few Dune and LArSoft functions identifed as candidates

– Profling shows that our current DUNE candidates are promising (~10%
CPU time)

– Started with a LArSoft Segment3D::GetDist2(…) function for a frst
evaluation → observed 3x faster using vector types!

● I am currently working on vectorized versions of a few specifc
functions, and on benchmarks to assess performance
improvements
– Using VecCore types and Vc library backend

● Also porting vectorized code back to LArSoft
– adding dependences on VecCore headers and Vc library for builds

● Planning to use vectorize DUNE functions (larger relative
contributions)

● First preliminary results look promising

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

