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SKA Radio Telescope 700 TB/sec in 2020

Global digital data demography  

 Unprecedented 3V expansion  of 
data 

 Volumes 

 Velocities

 Varieties

Subset of Data Producers 
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 Make use of advances in CPU, storage and network technologies 

 Enable new approaches to computing and software 

 Ensure the long-term sustainability of the software through the lifetime of the HL- LHC 

 Attract the required new expertise 

HL-LHC software R&D requirements



 More than 20M lines of code (some of the components are 15 years old).

 Single architecture (x86_64)

 Self contained, monolithic

 Serial processing model

 Sustainability concerns

 Original authors no longer in the field

 Poor maintenance

 Not well documented 

 Lacking unit tests 

LHC software



 Network bandwidth will continue to 
increase, but the ability to use it efficiently 
will need a closer integration with 
applications that supports:
 Software distribution and distributed data and 

workflow management

 Awareness of the extremely hierarchical view of 
data, from long latency tape access and 
medium-latency network access through to the 
CPU memory hierarchy. 

Future trends Moore’s law is dead, long live 

Nielsen’s law



Taking advantage of new architectures and programming paradigms will be critical for HEP 
to increase the ability of our code to deliver physics results efficiently, and to meet the 
processing challenges of the future. 
(A Roadmap for HEP Software and Computing R&D for the 2020s. arXiv:1712.06982)



Perfect software



 Micro-services architecture 

 Flow based reactive programming (FBP)

CS architectures to help 



 Application is made of components that communicate data
 Small, simple and independent

 Easier to understand and develop

 Less dependencies 

 Faster to build and deploy

 Reduced develop-deploy-debug cycle 

 Easy to migrate to data

 Scales independently

 Independent optimizations

 Improves fault isolation

 Eliminates long term commitment to a single technology stack.

 Easy to embrace new technologies

Micro-services: Advantages



 Glue between micro-services

 How they connect to achieve computational goals

 Makes application truly distributed   

Flow based programming (FBP)

A B

{ A calls B } v.s. { A message B }

• B reacts on message

• Named inputs

• Sync/async message passing 



CLARA implements micro-services 

and FBP

 Application is defined as a network of loosely coupled processes, 
called services.
 Services exchange data across predefined connections by message passing, where 

connections are specified externally to the services.

 Services can be requested from different data processing applications.

 Loose coupling of services makes polyglot data access and processing solutions possible 
(C++, Java, Python, Fortran)

 Services communicate with each other by exchanging the data quanta. 

 Thus, services share the same understanding of the transient data, hence the only coupling 
between services.
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Data unit (event) stream processing

 Data driven, data centric design.

 The focus is on transient data event 
modifications. Advantage over algorithm 
driven design is that a much greater 
ignorance of the data processing code is 
allowed (loose coupling).

 Design = service composition + event-
routing.

 Self routing (no routing scheduler)

 Event routing graph defines application 
algorithm
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Algorithm examples

S1 + S2 + S3 + S4;

S3 + S5 + S6;

S1 S2 S3 S4

S5 S6

S1 + S2 + S3;

while( S3 == ”needs calibration") {

F1 + F2 + S3;

} 

S3 + S4 + S6;

S1 S2 S3 S4

F1

S6

F2



CLARA distributed file storage system 

CDFS Master DPE

Heartbeat/2sec.

• Available local SSD/HHD

• Available memory

• Stored Files

• File name

• Status: 

• Active 

• Passive-hot

• Passive-cold

• Passive-ready-

remove

File Metadata DB

• Key = File Name

• Value= DPE Info

Control via SSH

• Stage 

• Promote

• Demote

• Remove

Metadata of the

Dataset to be 

processed



CLAS12 reconstruction

FCAL
0.08ms

FHODO
0.05ms

FTEB
0.05ms

DCHB
34.05ms

DCTB
63.7ms

FTOF
1.16ms

EBTB
0.38ms

EBHB
0.37ms

EC
0.75ms

LTCC
0.05ms

HTCC
0.14ms

CTOF
0.19ms

RS
0.07ms

WS
0.25ms

CLARA  micro-service 
Can be deployed as a separate process or 

a thread within a process. Multi-threaded

CLARA  transient data-stream 
Message passing through pub-sub middleware. No 

dependencies between micro-services.

Total data processing latency per event, per core = 101.29ms
(Note: dependents on magnetic field swimming step size, number of track and background)

For simulated data file = sidisSkim10K.hipo

Trigger efficiency = 100%

Track multiplicity >=2  

No background
Node = Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz 2x16

All tracks Charge tracks

Black generated, Red: reconstructed hit-based, Green: reconstructed time-

based



Vertical scaling 



Measurement 1 Process 2 Processes 4 processes

8P-8H

ms

16P-16H

ms

8P-8H

ms (N proc.)

16P-16H

ms (N proc.)

8P-8H

ms (N proc)

1 8.50 4.10 8.13(1) 5.18(1) 8.51(1) 9.34(3)

9.30(2) 5.22(2) 7.99(2) 9.20(4)

2 8.32 4.13 8.19(1) 5.16(1) 8.48(1) 8.90(3)

9.31(2) 5.22(2) 8.05(2) 9.19(4)

3 8.33 4.16 8.14(1) 5.19(1) 8.55(1) 8.90(3)

9.17(2) 5.10(2) 8.10(2) 8.42(4)

Aver. proc. 1 8.38 4.13 8.15 5.18 8.51

Aver. proc. 2 9.26 5.18 8.06

Aver. proc. 3 9.05

Aver. proc. 4 8.88

Rate in KHz 0.119 0.242 0.123+0.108=0.231 0.193+0.193=0.386 0.117+0.124+0.110+0.113=0.464

NUMA studies (Intel® Xeon® CPU E5-2697A V4 

2.60GHz 2x16) 



User experience



Glossary

Data processing services.

Scaling up  to Cn cores.

Data passage/link

between services

Service control 

messages

Service configuration

Knowledge feedback

IO services

In memory data queue

(ring-buffer)

Computing resource 

boundaries 

Data-processing

environment

CLARA
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NASA EOS data fusion and processing

• OBJECTIVES:
• To demonstrate NAIADS 

approach and full functionality 
using existing data;
To benchmark NAIADS 
performance;
Available data: 9 years of near-
coincident measurements of from 
SCIAMACHY and MODIS; 
Create new fused 
SCIAMACHY/MODIS/ECMWF 
data product (requested by a 
number of projects). 

• SCIAMACHY Level-1 Data: 
• Spectral measurement for every 

footprint: 30 km x 230 km; Swath 
950 km (4 footprints) from 10 AM 
Sun-synch orbit. 

• ECMWF Data (re-analysis): 
• Gridded (0.125o);6 weather 

parameters; Map every 6 hours; 

• MODIS/Terra Level-2 Data: 
• Level-2 Cloud and Aerosol Data

Spatial scale: 1 / 5 km and 10 km 
spatial; Swath 2300 km (global 
coverage daily); 10:30 AM Sun-
synch orbit. 



NAIADS deployment on AWS

AWS c4.8xlarge instances,

36 vCPUs ~= 18 physical cores 

Staging data from AWS S3 

Data processing rate based on 

average workflow execution over 10 

SCIAMACHY files. 

Vertical scaling up to 1.4KHz on 

single AWS node

Data processing continuous web 

monitoring 

9 years of data has been processed. 

More data is currently being 

processed.



Stage 2 CLARA Service

C++

Event Builder CLARA Service

C++

NASA SRB data flow diagram

Stage 1

Fortran

Grid-pixel

Container

C++

Grid-pixel

Dispatcher

C++

Stage 2

Fortran

Writer CLARA Service

C++
File

Grid

Next Grid

Container is empty. Next month/day/hour

File

45 minutes to process 1 month data

• ISCCP HXS: 29TB

• Stage 1 processing: 153 days (1°), 238 days (0.5°).  
2200 lines of Fortran code.

• Stage 1 files: 47TB each 1° and 0.5°

• Stage 2 processing: 85 days (1°), 119 days (0.5°).  
1700 lines of Fortran code.

• Stage 2 files: 1.1 TB (1°), 4.1TB (0.5°)

Total Time/Storage for 34 years 

(1983-2016)

21 hours to process 1 month data



CLARA Reactive Data-stream Processing 

Framework

About:

We use CLARA to create software applications as a suite

of independently deployable, small, modular services in

which each service runs a unique algorithm,

communicating with each other through a well-defined

mechanism to serve data processing goals. Services of the

same software application can be written in different

programming languages, where each service is developed,

optimized and maintained independently.

Micro-services architecture for data analytics   

Resilient:

CLARA system stays responsive in the face of

failure. Resilience is achieved by replication,

containment, isolation and delegation. Failures are

contained within each service, isolating services from

each other and thereby ensuring that parts of the

system can fail and recover without compromising

the system as a whole.

Elastic:

CLARA system stays responsive under varying

workload. It reacts to changes in the input data rate

by increasing or decreasing the resources allocated

to service these inputs (horizontal and vertical

scaling). CLARA implements predictive, as well as

reactive, scaling algorithms by providing relevant live

performance measures. We achieve elasticity in a

cost-effective way on commodity hardware and

software platforms.

Robust:

CLARA uses asynchronous message-passing to

establish boundaries between services that ensure

loose coupling, isolation, location transparency, and

provides means to delegate errors as messages.

Employing explicit message-passing enables load

balancing and overall data-flow, i.e. application

algorithm control and orchestration.

Conclusion

http://claraweb.jlab.org

https://github.com/JeffersonLab/clara-java

https://github.com/JeffersonLab/clara-cpp

https://github.com/JeffersonLab/clara-python

http://claraweb.jlab.org/
https://github.com/JeffersonLab/clara-java
https://github.com/JeffersonLab/clara-cpp
https://github.com/JeffersonLab/clara-python

