
CLAs12 Reconstruction and Analysis Framework

Vardan Gyurjyan (Jefferson Lab)
gurjyan@jlab.org

SKA Radio Telescope 700 TB/sec in 2020

Global digital data demography

 Unprecedented 3V expansion of
data

 Volumes

 Velocities

 Varieties

Subset of Data Producers
2016

EOS

LHC

FB

TW
0

5

10

15

20

25

30

35

40

E
x
a
b

y
te

Global Digital Data

Scientific NonScientific

ATLAS 5 EB in 2026

 Make use of advances in CPU, storage and network technologies

 Enable new approaches to computing and software

 Ensure the long-term sustainability of the software through the lifetime of the HL- LHC

 Attract the required new expertise

HL-LHC software R&D requirements

 More than 20M lines of code (some of the components are 15 years old).

 Single architecture (x86_64)

 Self contained, monolithic

 Serial processing model

 Sustainability concerns

 Original authors no longer in the field

 Poor maintenance

 Not well documented

 Lacking unit tests

LHC software

 Network bandwidth will continue to
increase, but the ability to use it efficiently
will need a closer integration with
applications that supports:
 Software distribution and distributed data and

workflow management

 Awareness of the extremely hierarchical view of
data, from long latency tape access and
medium-latency network access through to the
CPU memory hierarchy.

Future trends Moore’s law is dead, long live

Nielsen’s law

Taking advantage of new architectures and programming paradigms will be critical for HEP
to increase the ability of our code to deliver physics results efficiently, and to meet the
processing challenges of the future.
(A Roadmap for HEP Software and Computing R&D for the 2020s. arXiv:1712.06982)

Perfect software

 Micro-services architecture

 Flow based reactive programming (FBP)

CS architectures to help

 Application is made of components that communicate data
 Small, simple and independent

 Easier to understand and develop

 Less dependencies

 Faster to build and deploy

 Reduced develop-deploy-debug cycle

 Easy to migrate to data

 Scales independently

 Independent optimizations

 Improves fault isolation

 Eliminates long term commitment to a single technology stack.

 Easy to embrace new technologies

Micro-services: Advantages

 Glue between micro-services

 How they connect to achieve computational goals

 Makes application truly distributed

Flow based programming (FBP)

A B

{ A calls B } v.s. { A message B }

• B reacts on message

• Named inputs

• Sync/async message passing

CLARA implements micro-services

and FBP

 Application is defined as a network of loosely coupled processes,
called services.
 Services exchange data across predefined connections by message passing, where

connections are specified externally to the services.

 Services can be requested from different data processing applications.

 Loose coupling of services makes polyglot data access and processing solutions possible
(C++, Java, Python, Fortran)

 Services communicate with each other by exchanging the data quanta.

 Thus, services share the same understanding of the transient data, hence the only coupling
between services.

FE

Service Bus (xMsg)

Service Layer

Orchestration Layer

Registration

DPE

SC SC S

SS

DPE

SC SC S

SS

DPE

SC SC S

SS

DPE

SC SC S

SS

gateway

security

Local

Registration

Local

Registration

Local

Registration

Local

Registration

CLARA architecture

SE

1

Service

One request at a time

SE

Service

Multiple simultaneous requests

SE
SESE

1

Service Engine

CLARA service

SE

1

Service Container 1

SE

n

SE

1

Service Container n

SE

n

Registration Admin

SE

Service Container 2

SE
SESE

1SE

1

Data processing Environment

CLARA data processing environment

Data unit (event) stream processing

 Data driven, data centric design.

 The focus is on transient data event
modifications. Advantage over algorithm
driven design is that a much greater
ignorance of the data processing code is
allowed (loose coupling).

 Design = service composition + event-
routing.

 Self routing (no routing scheduler)

 Event routing graph defines application
algorithm

15

Algorithm examples

S1 + S2 + S3 + S4;

S3 + S5 + S6;

S1 S2 S3 S4

S5 S6

S1 + S2 + S3;

while(S3 == ”needs calibration") {

F1 + F2 + S3;

}

S3 + S4 + S6;

S1 S2 S3 S4

F1

S6

F2

CLARA distributed file storage system

CDFS Master DPE

Heartbeat/2sec.

• Available local SSD/HHD

• Available memory

• Stored Files

• File name

• Status:

• Active

• Passive-hot

• Passive-cold

• Passive-ready-

remove

File Metadata DB

• Key = File Name

• Value= DPE Info

Control via SSH

• Stage

• Promote

• Demote

• Remove

Metadata of the

Dataset to be

processed

CLAS12 reconstruction

FCAL
0.08ms

FHODO
0.05ms

FTEB
0.05ms

DCHB
34.05ms

DCTB
63.7ms

FTOF
1.16ms

EBTB
0.38ms

EBHB
0.37ms

EC
0.75ms

LTCC
0.05ms

HTCC
0.14ms

CTOF
0.19ms

RS
0.07ms

WS
0.25ms

CLARA micro-service
Can be deployed as a separate process or

a thread within a process. Multi-threaded

CLARA transient data-stream
Message passing through pub-sub middleware. No

dependencies between micro-services.

Total data processing latency per event, per core = 101.29ms
(Note: dependents on magnetic field swimming step size, number of track and background)

For simulated data file = sidisSkim10K.hipo

Trigger efficiency = 100%

Track multiplicity >=2

No background
Node = Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz 2x16

All tracks Charge tracks

Black generated, Red: reconstructed hit-based, Green: reconstructed time-

based

Vertical scaling

Measurement 1 Process 2 Processes 4 processes

8P-8H

ms

16P-16H

ms

8P-8H

ms (N proc.)

16P-16H

ms (N proc.)

8P-8H

ms (N proc)

1 8.50 4.10 8.13(1) 5.18(1) 8.51(1) 9.34(3)

9.30(2) 5.22(2) 7.99(2) 9.20(4)

2 8.32 4.13 8.19(1) 5.16(1) 8.48(1) 8.90(3)

9.31(2) 5.22(2) 8.05(2) 9.19(4)

3 8.33 4.16 8.14(1) 5.19(1) 8.55(1) 8.90(3)

9.17(2) 5.10(2) 8.10(2) 8.42(4)

Aver. proc. 1 8.38 4.13 8.15 5.18 8.51

Aver. proc. 2 9.26 5.18 8.06

Aver. proc. 3 9.05

Aver. proc. 4 8.88

Rate in KHz 0.119 0.242 0.123+0.108=0.231 0.193+0.193=0.386 0.117+0.124+0.110+0.113=0.464

NUMA studies (Intel® Xeon® CPU E5-2697A V4

2.60GHz 2x16)

User experience

Glossary

Data processing services.

Scaling up to Cn cores.

Data passage/link

between services

Service control

messages

Service configuration

Knowledge feedback

IO services

In memory data queue

(ring-buffer)

Computing resource

boundaries

Data-processing

environment

CLARA

DPE

Assumptions

EBCMD

Extraction

Service

Assumptions

CLARA DPE Farm NodeN

Experimental and Simulated Data

C
L
A

S
1

2
 R

e
c
o

n
s
tr

u
c
ti
o
n

 M
u

lt
i-

N
o
d

e
 A

p
p

lic
a

ti
o

n

S
im

u
la

te
d

 d
a

ta

R
e
c
o

n
s
tr

u
c
ti
o

n

S
o

m
e

 o
th

e
r

e
x
p

e
ri

m
e

n
t

re
c
o

n
s
tr

u
c
ti
o

n

p
ro

g
ra

m

EBCMD

Extraction

Service

O
th

e
r

E
x
p
e
ri
m

e
n
t

a
n
d
/o

r
R

e
s
e
a
rc

h
 F

a
c
ili

ty
 C

o
m

p
u
ti
n
g

R
e
s
o
u
rc

e
s

CLARA Data Bus

EC

HT

TOF

TT

PID

R

W
EBCM

D

EBCMD

Table
EBCMD

Table
CLARA Data Bus

CLAS12

Reconstructed Data

Event

Generator

MC

S1

MC

SN

EC HT TOF TT PID

C
L
A

R
A

 D
P

E

C
lo

u
d
 C

o
m

p
u
ti
n
g
 R

e
s
o
u
rc

e
s

EBCMD

Table

CLAS12 Simulation and Reconstruction Multi-Node

Application

STA

T

W

STA

T

W

CLARA DPE

C
L
A

R
A

 D
P

E

C
L
A

R
A

 D
P

E

GPD-

TMD
Calculation

Service J
L
A

B
 C

o
m

p
u
ti
n
g
 R

e
s
o
u
rc

e
s

EBCMD

Table

W

DST

EBCMD

Extraction

Service

CLARA Data Bus EBCMD

Table

1

Cn

1

Cn

W

Cooked,

DST

Cn

1

Model
Parameterization

SF
Calculation

Service

σB
Calculation

Service

σR
Calculation

Service

GPD-

TMD

Extraction

Service

SF

Extraction

Service

σB

Extraction

Service

σR

Extraction

Service

R

CLARA DPE

CLARA DPE

Cloud

NodeN

CLARA Data Bus

Cn

1

NASA EOS data fusion and processing

• OBJECTIVES:
• To demonstrate NAIADS

approach and full functionality
using existing data;
To benchmark NAIADS
performance;
Available data: 9 years of near-
coincident measurements of from
SCIAMACHY and MODIS;
Create new fused
SCIAMACHY/MODIS/ECMWF
data product (requested by a
number of projects).

• SCIAMACHY Level-1 Data:
• Spectral measurement for every

footprint: 30 km x 230 km; Swath
950 km (4 footprints) from 10 AM
Sun-synch orbit.

• ECMWF Data (re-analysis):
• Gridded (0.125o);6 weather

parameters; Map every 6 hours;

• MODIS/Terra Level-2 Data:
• Level-2 Cloud and Aerosol Data

Spatial scale: 1 / 5 km and 10 km
spatial; Swath 2300 km (global
coverage daily); 10:30 AM Sun-
synch orbit.

NAIADS deployment on AWS

AWS c4.8xlarge instances,

36 vCPUs ~= 18 physical cores

Staging data from AWS S3

Data processing rate based on

average workflow execution over 10

SCIAMACHY files.

Vertical scaling up to 1.4KHz on

single AWS node

Data processing continuous web

monitoring

9 years of data has been processed.

More data is currently being

processed.

Stage 2 CLARA Service

C++

Event Builder CLARA Service

C++

NASA SRB data flow diagram

Stage 1

Fortran

Grid-pixel

Container

C++

Grid-pixel

Dispatcher

C++

Stage 2

Fortran

Writer CLARA Service

C++
File

Grid

Next Grid

Container is empty. Next month/day/hour

File

45 minutes to process 1 month data

• ISCCP HXS: 29TB

• Stage 1 processing: 153 days (1°), 238 days (0.5°).
2200 lines of Fortran code.

• Stage 1 files: 47TB each 1° and 0.5°

• Stage 2 processing: 85 days (1°), 119 days (0.5°).
1700 lines of Fortran code.

• Stage 2 files: 1.1 TB (1°), 4.1TB (0.5°)

Total Time/Storage for 34 years

(1983-2016)

21 hours to process 1 month data

CLARA Reactive Data-stream Processing

Framework

About:

We use CLARA to create software applications as a suite

of independently deployable, small, modular services in

which each service runs a unique algorithm,

communicating with each other through a well-defined

mechanism to serve data processing goals. Services of the

same software application can be written in different

programming languages, where each service is developed,

optimized and maintained independently.

Micro-services architecture for data analytics

Resilient:

CLARA system stays responsive in the face of

failure. Resilience is achieved by replication,

containment, isolation and delegation. Failures are

contained within each service, isolating services from

each other and thereby ensuring that parts of the

system can fail and recover without compromising

the system as a whole.

Elastic:

CLARA system stays responsive under varying

workload. It reacts to changes in the input data rate

by increasing or decreasing the resources allocated

to service these inputs (horizontal and vertical

scaling). CLARA implements predictive, as well as

reactive, scaling algorithms by providing relevant live

performance measures. We achieve elasticity in a

cost-effective way on commodity hardware and

software platforms.

Robust:

CLARA uses asynchronous message-passing to

establish boundaries between services that ensure

loose coupling, isolation, location transparency, and

provides means to delegate errors as messages.

Employing explicit message-passing enables load

balancing and overall data-flow, i.e. application

algorithm control and orchestration.

Conclusion

http://claraweb.jlab.org

https://github.com/JeffersonLab/clara-java

https://github.com/JeffersonLab/clara-cpp

https://github.com/JeffersonLab/clara-python

http://claraweb.jlab.org/
https://github.com/JeffersonLab/clara-java
https://github.com/JeffersonLab/clara-cpp
https://github.com/JeffersonLab/clara-python

