
The Starterkit

Violaine Bellée on behalf of the LHCb Collaboration ~ 28 March 2017 \sim Napoli \sim

STARTERKIT

Goals and motivations

* Started in 2015 following these observations:

Students trained as physicists but asked to be data analysts

Enormous amount of software to learn for newcomers

Broken or not up-to-date documentation

Lots of experiment-specific conventions

Goals and motivations

***** Started in 2015 following these observations:

Students trained as physicists but asked to be data analysts	Broken or not up-to-date documentation
Enormous amount of software to learn for newcomers	Lots of experiment-specific conventions

* What we expect to accomplish:

➤ Give a **solid starting point** to newcomers in the most used software in their experiment (general and specific)

Improve software literacy in the experiment

Teach good practices

Help newcomers socialise and integrate in the collaboration

The strategy

Tutorials

Tutorials in separate gitbooks for:

- General software
- LHCb specific software

Main ideas:

- Basic understanding
- **Building blocks** to work in complex workflows
- Full examples of working and **up-to-date code**
- Modifications via **fork and merge**

Workshops

Held at CERN, only a few rules: - **Small fee** (25CHF)

- Small groups (20)
 with 1 instructor
 and 2+ helpers
 Hands-on sessions
 (very interactive)
- No video conference
- No copy-paste (natural pace)
- Use **stickers** to get live feedback

The computing fields covered

Common basics

- basics: command-line operations, shell scripting
- version control system: git
- computing language: basic python (with matplotlib, pandas)

Experiment specific software (basic)

- software for physics analysis
- usage of the grid

Experiment specific software (advanced)

- more specific software for physics analysis (trigger, central selection)
- simulation software
- experiment specific version control: LHCb gitlab

Common basics

https://lhcb.github.io/analysis-essentials/

Experiment specific software (basic)

https://lhcb.github.io/starterkit-lessons/first-analysis-steps/

Experiment specific software (advanced)

https://lhcb.github.io/starterkit-lessons/second-analysis-steps/

Common basics

- basics: command-line operations, shell scripting
- version control system: git
- computing language: basic python (with matplotlib, pandas) Starterkit Workshop

Experiment specific software (basic)software for physics analysisusage of the grid

Experiment specific software (advanced)
 more specific software for physic malysis (trigger, central selection)
 simulation software activity of the software selection of the software selec

An entry-level and an advanced workshop

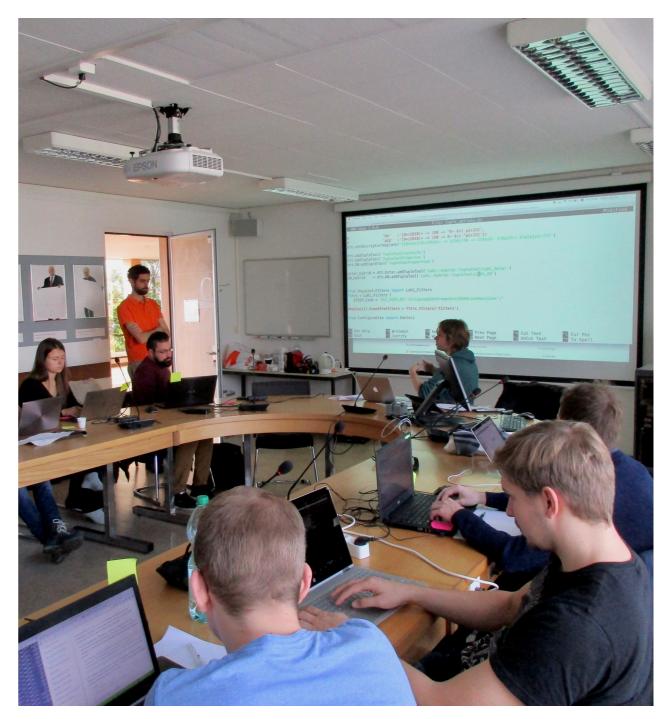
Starterkit Workshop

Targeted at **new members** of the collaboration

40 participants, 4 days 8-12 instructors, 15-20 helpers

1.5 days for general tools2.5 days dedicated to LHCbsoftware

Impactkit Workshop


Targeted at a **more experienced** audience

20 participants, 3 days 4-5 instructors, 10 helpers

1.5 days of lessons on advanced software topics
1.5 days dedicated to a
hackathon (in groups of 2) on short computing projects proposed by the collaboration

The particularities of our approach

- Organisation, teaching and lesson writing mostly done by early-career scientists (MSc and PhD-level students), always on a voluntary basis
- High turnover of teachers, helpers and organisers
- Use tools (Google docs, git issues) to ensure good
 knowledge transfer

Pros and cons of the strategy

Pros

Very efficient teaching method

Lots of **interactions and feedback**

Not very expensive

Lots of people are **ready to give back** and contribute to future StarterKit workshops

Cons

Complicated room booking

High number of volunteers needed

Coming on site can be difficult for the students (hence we try to organize the workshops close to an event like LHCb week)

Some successes

Since 2015 4 Starterkit workshops (172 LHCb students) 2 Impactkit workshops (40 students)

2017 Joined efforts with ALICE to mutualize organization and lesson writting ➤ Very positive collaboration, allowed to create a common repository for basic courses in

Starterkit pages now widely used as a **documentation** in LHCb

11

Some successes

Since 2015 4 Starterkit workshops (172 LHCb students) 2 Impactkit workshops (40 students)

2017

Joined efforts with ALICE to mutualize organization and lesson writting ➤ Very positive collaboration,

allowed to create a **common** repository for basic courses

Starterkit pages now widely used as a **documentation** in LHCb

12

Sustainability and wider collaborations

* Suggestions for Sustainability/Collaborating with others

Sustainability already ensured within LHCb

- all documentation updated at each workshop
- former helpers can teach and organise later workshops

Possible **collaborations** across physics experiments for the **basic software teaching** (shell, git, python)

Sustainability and wider collaborations

* Suggestions for Sustainability/Collaborating with others

Sustainability already ensured within LHCb

- all documentation updated at each workshop
- former helpers can teach and organise later workshops

Possible **collaborations** across physics experiments for the **basic software teaching** (shell, git, python)

* The biggest barrier to accomplish fruitful collaboration between existing initiatives:

- Our model **does not scale very well** (high number of people needed to teach/help, on-site presence)

* A suggestion to overcome this barrier?

- Take the Starterkit model to **organise your own workshop** (bigger collaboration could organise regional workshops like Atlas Asia)

How to organise your own Starterkit workshop:

Preliminary condition: Make sure that all the material you want to cover is available on a central (and easy to access) repository

Set up a team! You need 2 (very motivated) organisers and ~4 instructors and 10 helpers for each group of 20 students

Review all the material so that everything is up-to-date (to be done by the teachers and helpers, and if applicable by the members of the relevant groups within the experiment)

Source of the instructor of th

Organise a social event for people to network, discuss with instructors and helpers

Equip yourself with stickers (for feedback) and a coffee machine (for work enhancement)

...and you're good to go!

Thanks for your attention!

Conference Rooms A | B | C | D | E Salles de conférences

ogramme Higgs Hunt