
HSF Build and Packaging 
Working Group

Graeme Stewart & Ben Morgan

WLCG/HSF Workshop Naples, 2018-03-28



The potted history

● One of the first and most active HSF groups (Liz Sexton-Kennedy and Benedikt Hegner 
driving things)

● Prepared an HSF Technical Note looking at the main build tools
○ Community and FOSS - main advantages and disadvantages summarised

● Handed over group to new coordinators last Autumn (Graeme Stewart and Ben Morgan)
○ Tracked updates on tools that were promising candidates, e.g., Spack
○ Looked again at some FOSS solutions: portage and nix
○ Asked what we learned from successful community tools: AliBuild

● Broadened a little the scope - not just building and packaging:
○ Challenges of deployment (CMVFS, containers)
○ Development environment (for ‘end user’ developers)

● Recently we released v1.0 of the Use Cases and worked on a test stack for re-evaluating 
solutions (‘test driving’)

2

http://hepsoftwarefoundation.org/notes/HSF-TN-2016-03.pdf


Why this matters… and matters a lot!

● We have a real problem to solve with build, packaging, deployment and 
development

○ This has been the work of the group so far
○ Best practice and common tools would help a lot with today’s workflows

● Now hope to have more community software projects
○ Prototypes that need to be tested by a wider user group
○ Also projects from FOSS world that pop up and might be useful

● This makes having advice on how to structure projects, build them and 
integrate them very important

○ Project Guidelines and Project Template (to be covered later)
○ Integrate a standard build tool recipe

3

http://hepsoftwarefoundation.org/project_guidelines.html
https://github.com/HSF/tools


Use Cases

● Group worked a lot on what the use cases actually are
○ The idea being to properly motivate all of the requirements that we derive for the packaging tools

● Settled last week on Use Cases v1.0
○ Note that these are not very formal use cases, and some requirements are derived in the same 

document
■ We felt this provided the most useful document

○ Not ruling out evolution from here as we actually go to testing, but it’s a solid beginning

● Modus operandi
○ Find the largest set of common needs

■ Not every experiment needs to use all features
○ Knowledge sharing (e.g., build recipes) is one of the most useful features we strive for

■ Sharing inside HEP is good, with a wider science ecosystem better, full FOSS best
○ May not end up with ‘one tool to rule them all’ - a recommended suite is also an outcome

4

https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv14ju3oTI/edit?usp=sharing


Use Case Highlights
● Deterministic builds

○ We'd better be confident we can redo what has been done...

● Flexibility
○ Be able to express what we want easily

● Use system packages if desired
○ caveat emptor

● Incremental builds
○ Build stack in several chunks, allows for sharing of common layers

● Efficient
● Install time relocation

○ Multiple destinations for one build, e.g., CVMFS, /usr/local/, /my/supercomputer (inc. containers)

● Patching process
○ What if something needs patched (canonical examples - OpenSSL bug; new generator; skim bug)

5



Next Steps

● We now have a test stack - some basic set of HEP packages that can be useful for some 
experiments

● Ben has laid out a procedure to test drive the stack with tools we want to evaluate
○ Spack (LLNL tool, HPC origins, wide science base)
○ Portage (Generic FOSS, packager for gentoo linux)
○ Nix (Functional build and packager tool, used in NixOS)
○ AliBuild (ALICE tool, developed and refined ideas from CMSBuild)
○ LCGCMake (Used to build LCG stacks)
○ …? (This is quite a dynamic area)

● Test stack is just a starting point - then we need to ‘stress’ against the more challenging use 
cases

● Aim to have some preliminary conclusions in time for CHEP parallel talk
● Packaging requirements: what are the contentious points and how do we go forward?
● How do we scale to multiple project which have completely different timescales and 

requirements in terms of software stacks?
6Questions from Giulio and Martin

https://docs.google.com/document/d/1LW8OsTFFA9QwsJ9fASkRoJ2E6Gk3UGnOQIcElCL8UCM/edit?usp=sharing

