
Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Static C++ Code Analysis

Sandro Wenzel (CERN)

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Disclaimer

• This is not a technology survey and naturally incomplete ... Will

mention

– What are use cases?

– Example Frameworks

– A major (usability) shortcoming

• Material here based on

– Static Analysis Suite (SAS)

– AliceO2 codechecker

2

https://indico.cern.ch/event/570056/contributions/2305525/attachments/1363417/2064228/16-10-31-SFTGroupMeeting-SAS.pdf
https://indico.cern.ch/event/624025/contributions/2530993/attachments/1436844/2209922/ClandTidy_ALICEOFFLINEWEEK.pdf

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

What is Static Code Analysis? Why would one want to use it?

• A tool for checking, analysing, and potentially changing (C++)

code without executing it

– i.e. before / during compilation

3

• To check if your code is

– (Semantically) correct -- according to user specification -- beyond

being just valid C++ text

– Following coding guidelines

– Following modern practices (C++11/14/17 in favor over C++98)

– Free of performance bottlenecks

– Thread safe

– ….

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Cooked up example : Just to show what is possible

Imagine you have a class … and you

want to make sure that

4

That implementations of function doWork() in

classes deriving from AbstractWorker do not

contain plain static variables … because

they are used in a threaded context

class AbstractWorker {

public:

virtual void doWork() = 0;

float mX;

float mInvX; // the inverse of X

};

class Worker : public AbstractWorker {

public:

void doWork() override {

static int state = 0;

// do some work

float y = 1./mX /*...*/;

}

};

That no one is dividing by ‘mX’ because that

is expensive and I have in any case cached

the inverse of it.

Member variables follow naming convention

Then, you are most likely in need to write

a custom static analysis (check)

1

1

2

3

3

2

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Code reporting / indexing

We have used static code analysis tools also for reporting / indexing

tasks which can be helpful for optimizations:

– For a given class, list all the functions that are used in a certain

project

– Given a virtual class, find out if this class is ever sub-classed in a

given set of code (if not the class does maybe not need to be virtual)

– Find all the loops in which trigonometric functions are called (for

instance with the goal to vectorize these math function calls)

5

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Integration into CI

6

Static analysis checks can naturally be integrated into CI. This is next to standard compilation,

unit tests, ... and you will only merge really good code.

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Static Analysis: How?

• Static code analysis tools needs access to the C++ abstract syntax tree (AST)

… as such it has a lot in common with an actual compiler

• Most of the static analysis approaches use the llvm/clang infrastructure since

this provides libraries and APIs to access the AST.

• Variations include

7

llvm

Custom Check tool

clang llvm

Extensible Check framework

clang

Custom Check modules

In HEP, one example is Static Analyser Suite (SAS) with origins in CMS

Relatively recent clang-tidy framework as open source project outside HEP

Fully custom tool directly based on llvm

headers/libraries

“Frameworks” that do heavy lifting ... and are

extensible with custom checks

https://github.com/dpiparo/SAS
http://clang.llvm.org/extra/clang-tidy

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

clang-tidy

• “clang-tidy is a modular static analysis framework and provides

a convenient interface for writing new checks.”

– Example in the backup slides

• large industry community behind

• already implements wide range of checks and growing

• integrated ability to autocorrect/fix errors in place

• very easily extensible

• Currently the most reasonable choice for most use cases

8

http://clang.llvm.org/extra/clang-tidy/

http://clang.llvm.org/extra/clang-tidy/checks/list.html
http://clang.llvm.org/extra/clang-tidy/#writing-a-clang-tidy-check
http://clang.llvm.org/extra/clang-tidy/

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Shortcomings?

• Nice to have extensible static analysis frameworks …

• For me a major inconvenience (true for clang-tidy or SAS) is the fact

that one has to do the extension within the source environment of

the tools

– Fork (+ maintain) clone of the git repository

• Rather, we would like to be able to write custom checks fully

outside the framework’s source tree and extend it dynamically at

runtime.

9

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Common interest here?

• (Continue) Developing common tools for HEP

(see effort by SAS) ?

• Common training / education ?

• Community push for a true dynamic plugin approach to

ease development ?

10

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

BACKUP

11

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Clang-Tidy Cool features

12

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Towards a separation of framework / custom module

13

