A Large lon Collider Experiment

ALICE

Static C++ Code Analysis

Sandro Wenzel (CERN)

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel



Disclaimer %%

ALICE

* This is not a technology survey and naturally incomplete ... Will
mention

— What are use cases?
— Example Frameworks

— A major (usability) shortcoming

 Material here based on
— Static Analysis Suite (SAS)
— AliceO2 codechecker

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel 2


https://indico.cern.ch/event/570056/contributions/2305525/attachments/1363417/2064228/16-10-31-SFTGroupMeeting-SAS.pdf
https://indico.cern.ch/event/624025/contributions/2530993/attachments/1436844/2209922/ClandTidy_ALICEOFFLINEWEEK.pdf

What is Static Code Analysis? Why would one want to use it? ?\IkCE

« Atool for checking, analysing, and potentially changing (C++)
code without executing it
— i.e. before / during compilation

« To check if your code is

— (Semantically) correct -- according to user specification -- beyond
being just valid C++ text

— Following coding guidelines

— Following modern practices (C++11/14/17 in favor over C++98)
— Free of performance bottlenecks

— Thread safe

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel



A Large lon Collider Experiment

Cooked up example : Just to show what is possible

class AbstractWorker {
public:
virtual void doWork() = 0;
8 float mX;
float minvX; // the inverse of X

I3

class Worker : public AbstractWorker {
public:
void doWork() override {
static int state = 0;
/l do some work
floaty = 1./mX /*...*/;
}
3

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

ALICE

Imagine you have a class ... and you
want to make sure that

Member variables follow naming conventionn‘

That implementations of function doWork() i
classes deriving from AbstractWorker do not
contain plain static variables ... because
they are used in a threaded context

That no one is dividing by ‘mX’ because that
Is expensive and | have in any case cached
the inverse of it.

Then, you are most likely in need to write
a custom static analysis (check)



Code reporting / indexing %7%

ALICE

We have used static code analysis tools also for reporting / indexing
tasks which can be helpful for optimizations:

— For a given class, list all the functions that are used in a certain
project

— Given a virtual class, find out if this class is ever sub-classed in a
given set of code (if not the class does maybe not need to be virtual)

— Find all the loops in which trigonometric functions are called (for
instance with the goal to vectorize these math function calls)

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel >



A Large lon Collider Experiment

Integration into ClI

ALICE

unit tests, ... and you will only merge really good code.

Static analysis checks can naturally be integrated into CI. This is next to standard compilation,

Add more commits by pushing to the mtt=trac branch on bovulpes/AliceO2.

° All checks have passed

5 successful checks
v build/02/02
v build/02/02-dev-fairroot

v % build/o2/macos

v build/o2checkcode/o2

v % continuous-integration/travis-ci/pr — The Travis C| build passed

/\

° This branch has no conflicts with the base branch when rebasing

Rebase and merge can be performed automatically.

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel

Hide all checks

Details




A Large lon Collider Experiment

Static Analysis: How?

ALICE
« Static code analysis tools needs access to the C++ abstract syntax tree (AST)
... as such it has a lot in common with an actual compiler

* Most of the static analysis approaches use the llvm/clang infrastructure since
this provides libraries and APIs to access the AST.

* Variations include

Fully custom tool directly based on llvm
headers/libraries

‘Frameworks” that do heavy lifting ... and are
extensible with custom checks

Custom Check modules

Custom Check tool Extensible Check framework

llvm clang llvm clang

In HEP, one example is Static Analyser Suite (SAS) with origins in CMS j

Relatively recent clang-tidy framework as open source project outside HEP

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel



https://github.com/dpiparo/SAS
http://clang.llvm.org/extra/clang-tidy

clang-tidy §%

ALICE

http://clang.llvm.org/extra/clang-tidy/

« “clang-tidy is a modular static analysis framework and provides
a convenient interface for writing new checks.”
— Example in the backup slides

 large industry community behind

 already implements wide range of checks and growing
* integrated ability to autocorrect/fix errors in place

e very easily extensible

« Currently the most reasonable choice for most use cases

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel 8


http://clang.llvm.org/extra/clang-tidy/checks/list.html
http://clang.llvm.org/extra/clang-tidy/#writing-a-clang-tidy-check
http://clang.llvm.org/extra/clang-tidy/

Shortcomings? %%

ALICE

* Nice to have extensible static analysis frameworks ...

« For me a major inconvenience (true for clang-tidy or SAS) is the fact
that one has to do the extension within the source environment of
the tools

— Fork (+ maintain) clone of the git repository

« Rather, we would like to be able to write custom checks fully
outside the framework’s source tree and extend it dynamically at
runtime.

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel



Common interest here? %%

ALICE

 (Continue) Developing common tools for HEP
(see effort by SAS) ?

« Common training / education ?

« Community push for a true dynamic plugin approach to
ease development ?

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel



A Large lon Collider Experiment

BACKUP

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel 11



FExample

struct A { struct A {
virtual void foo(int) = 0; virtual void foo(int) = 0;
}i b
struct B : public A { automatic fix . struct B : public A {
virtual void foo(int x) { void foo(int x) override {
if (x==1) if (x==1) {
printf("hello"); printf("hello");
} }
}i }
}i
clang-tidy -checks=—%,moderxoverx,readxbraces* test.cxx —— -std=c++11

/Users/swenzel/test.cxx:8:16: warning: prefer using 'override' or (rarely) 'final' instead of
'virtual' [modernize-use-override]
virtual void foo(int x) {

override
/Users/swenzel/test.cxx:9:13: warning: statement should be inside braces [readability-braces-around-
statements]
if(x==1)

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel 12



Towards a separation of framework / custom module n..%xi’ii £

“Hacked™ plugin solution for clang-tidy

llvm / clang installation managed to decouple our
..................................: Ch@Ck COde from tl,le main
1lvim headers llvm/clang git

+ libs :
: can our git can compile this into a
clang headers |: C:gn;igf i — custom module which is
+ libs AliceO2 check picked up by clang-tidy
: module (= real plugin mechanism)
clang-tidy [ = ew——
| executable
export LD PRELOAD = libAliceO2Checks.so
clang-tidy —checks=-*,Alice02* SourceFile.cxx
no free lunch: minimal code duplication from needs llvi shared libs installation

clang-tidy (“one header”)

Combined WLCG&HSF Workshop | Napoli, March 28th, 2018 | Sandro Wenzel 13



