

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Simulation and reconstruction challenges for DUNE / LAr TPCs

Erica Snider Fermi National Accelerator Laboratory

for the LArSoft Collaboration

Joint WLCG & HSF Workshop Napoli, Italy, March 26-29, 2018

Outline

- The physics
- LAr TPCs
- Reconstruction and simulation overview
- Challenges and outlook
- Summary

Neutrino oscillations

• Standard model 3-flavor neutrino mixing

Flavor
eigenstates
$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$
 Mass
eigenstates

Pontecorvo-Maki-Nakagawa-Sakata matrix

Neutrino oscillations

• Standard model 3-flavor neutrino mixing

$$\begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$
PMNS matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Three mixing angles:

$$\theta_{12}, \theta_{13}, \theta_{23}$$
CP-violating phase:

$$\delta_{CP}$$
Atmospheric/
Accelerator Accelerator Solar/Reactor

Neutrino oscillation parameters

Measure the oscillation parameters by measuring appearance and disappearance probabilities

$$egin{aligned} P_{lpha
ightarroweta} &= \delta_{lphaeta} - 4\sum_{i>j} ext{Re}(U^*_{lpha i} U_{eta i} U_{lpha j} U^*_{eta j}) \sin^2\!\left(\!rac{\Delta m^2_{ij} L}{4E}\!
ight) \ &+ 2\sum_{i>j} ext{Im}(U^*_{lpha i} U_{eta i} U_{lpha j} U^*_{eta j}) \sin\!\left(\!rac{\Delta m^2_{ij} L}{2E}\!
ight), \end{aligned}$$

$$\alpha,\beta \in (\nu_e,\nu_\mu,\nu_\tau)$$

DUNE: v_e appearance + v_{μ} disappearance + c.c.

Three mixing angles: θ_{12} , θ_{13} , θ_{23} CP-violating phase: δ_{CP}

2 mass differences: Δm_{32}^2 , Δm_{21}^2 + the sign of Δm_{32}^2

Neutrino oscillation parameters

• Measure the oscillation parameters by measuring appearance and disappearance probabilities:

Joint WLCG & HSF Workshop 2018, Napoli, Italy

Open questions in neutrino physics to be addressed

• What is the neutrino mass ordering?

Long-baseline oscillation measurements

- Is there CP violation in the neutrino sector
- Are there more than 3 neutrino flavors
- Is our picture of neutrinos correct?

Additional goals for DUNE

- Search for neutrinos from supernovas
- Search for evidence of proton decay

Short-baseline oscillations

Large underground detectors

Liquid argon time projection chamber experiments

• New generation of neutrino experiments based on LAr TPCs

Long baseline:

A collaboration of CERN, Fermilab, labs and universities around the world

Liquid argon time projection chamber experiments

Also the ProtoDUNE demonstrator experiments at CERN

Joint WLCG & HSF Workshop 2018, Napoli, Italy

LAr TPCs

10 E. Snider I Sim/ reco challenges for LAr TPC experiments

Joint WLCG & HSF Workshop 2018,

LAr TPC images from Anne Schukraft

LAr TPC images from Anne Schukraft

Joint WLCG & HSF Workshop 2018, Napoli, Italy

Dual-phase LAr TPC

Extract electrons from the LAr, amplify them in the gas

Longer drift distances possible with very high S:N

Two planes of readout strips at 90° Both are "collection" planes with unipolar signals

Images from WA105 Collaboration, PoS ICHEP2016 (2016) 305

- Other variations, e.g., for DUNE ND
 - Replace wire planes with a pixel readout plane
 - 3D space-point data directly from the detector
 - DUNE near detector, LArIAT, ArgonCube
 - HP gas Ar TPC with pixel readout

Joint WLCG & HSF Workshop 2018, Napoli, Italy

ν_µ charged-current quasi-elastic candidate in ArgoNeuT

Image from Ornella Palamara

A proton is identified that touched only two wires *and* is overlaid on a muon.

Charge separated at waveform level

Images from Ornella Palamara

Joint WLCG & HSF Workshop 2018, Napoli, Italy

Neutral current proton: ~4 cm track reconstructed, then identified using boosted decision tree algorithm

MICROBOONE-NOTE-1025-PUB http://microboone.fnal.gov/public-notes/

FIG. 4. 2D event display of a simulated neutral-current elastic event in MicroBooNE that was classified as a proton. The top image is a close-up event display of the simulated proton track. The bottom image shows the side view of the entire MicroBooNE TPC. All of the additional tracks are from cosmic rays.

A simulated event in ProtoDUNE SP: beam particle plus cosmics

Images from www.duncescience.org

LAr TPC reconstruction and simulation

E. Snider I Sim/ reco challenges for LAr TPC experiments

24

Joint WLCG & HSF Workshop 2018,

LArSoft

 A collaboration of experiments, labs, university groups and software projects

 Goal is to provide integrated, detector-independent software tools for the simulation, reconstruction and analysis for LAr TPC neutrino experiments

😤 Fermilab

LArSoft

- External projects that coordinate with experiments and integrate code into LArSoft
 - Pandora (Cambridge University)
 - Multi-algorithm pattern recognition
 - Event topology reconstruction (particle flow)
 - Wire-cell (Brookhaven National Laboratory)
 - Signal processing / simulation
 - 3D imaging
 - 3D pattern recognition
- Production code for experiments based on LArSoft
- Significant fraction of code is shared between experiments

- 2D view matching
 - Perform 1D "hit-finding" in waveforms
 - Cluster hits into 2D objects within each plane
 - Match 2D objects between views: 3D tracks and showers
 - Typically uses a combination of drift time and geometrical constraints, sometimes charge, MCS

Examples: Pandora

Trajectory Cluster + Projection Matching Algorithm (originally from ICARUS)

Example of Pandora track and shower view matching

- 3D reconstruction
 - Attempts to construct 3D space-points or images without first clustering in 2D views
 - Two main approaches
 - 1. Wire-cell 3D imaging
 - Tomographic technique on views
 - Matches charge, other information across wire planes in time slices
 - L1 regularization to solve under-constrained problem

3D charge deposition models for pi-zero (left), neutrino plus cosmics (right)

Images from https://www.phy.bnl.gov/wire-cell/examples

Tiles created by wire crossings. Wires see same

charge through

each tile..

 $= 60.0^{\circ}, \theta_{V} = 60.0^{\circ}, N_{wires} = 20$

- 3D reconstruction
 - Attempts to construct 3D space-points or images without first clustering in 2D views
 - Two main approaches
 - 2. "Cluster 3D" (Stanford Linear Accelerator Laboratory)
 - Starts with hits found in waveforms
 - Matches across planes based on time, charge, geometry

- Pixel-level image processing
 - Deep learning: convolutional neural networks
 - Can extract pixel-by-pixel classifications directly from image
 - Empty / not empty, track / shower, vertex / not a vertex, etc.
 - Usually a hybrid approach
 - DL used only for parts of the problem
 - E.g., provide well-informed hints to downstream pattern recognition
 - ProtoDUNE and MicroBooNE working extensively on this
 - DUNE using CNN for track-shower separation
 - Looking into much more
 - MicroBooNE working on full reconstruction with multiple DL steps
 - Constructing an entire chain for low energy excess analysis

CNN-based pixel classification

Joint WLCG & HSF Workshop 2018, Napoli, Italy

- Pixel-level image processing
 - Other techniques taken from image processing industry
 - Combinations of blurring / contour-finding used to aid in clustering energy deposition from showers
 - DUNE and MicroBooNE have developed approaches

Algorithmic challenges

- Shower energy reconstruction
 - MicroBooNE is achieving excellent calorimetric energy resolution after calibration, but...
 - ...current shower algorithms *tend* to under-cluster

Note: for illustrative purposes only!! Not a real performance test!!

Plot courtesy of Tom Junk, Robert Sulej

 Have seen steady improvements, so prospects are good for excellent shower energy resolution

Algorithmic challenges

- Track / shower separation
 - Particularly difficult at lower energies when there is minimal showering activity
 - Can lead to mis-classification of events
- Short track reconstruction
 - Efficiency falls dramatically for tracks less than ~20 cm long
- Event vertex identification
 - Easy most of the time. Surprisingly error prone at others.
 - Really hard for single pi-zero events, for instance
 - Not helped by spatial ambiguities induced by wire-plane readouts
 - Contained tracks offer lots of handles

- So, basically, need improvements in all areas related to observing low energy $\nu_{\rm e}$ charged current quasi-elastic interactions
 - I.e., the ν_{e} appearance measurement need by DUNE

LAr TPC simulation

- Simulation within LArSoft
 - Geant4
 - Ray tracing
 - Material interactions, energy deposition
 - Detector simulation and digitization
 - Ionization electron / scintillation photon modeling
 - Electron drift model
 - Field response model
 - Electronics response model
 - Digitizer simulation to generate raw data
 - Parameterized photon propagation

LAr TPC simulation

- Detector modeling
 - High fidelity simulation requires charged particle step sizes ~few x 100 μ m for events that can span meters
 - Some low-level modeling needs improvement
 - Good results obtained using data-driven methods at MicroBooNE
 2D response functions available in Wire-cell
 - Making progress on understanding ionization and scintillation
 - Even now, agreement in high-level physics distributions is more than adequate for physics (e.g., MicroBooNE)

Computing challenges

Joint WLCG & HSF Workshop 2018,

39 E. Snider I Sim/ reco challenges for LAr TPC experiments

The first potential challenge: data scale

- DUNE far detector is large with high resolution data
 - 4 modules x 10kt fiducial mass
 - 384k channels in first (single phase) module
 - One drift window readout + 12 bit ADC = 3 GB / event / module
 - Anticipate 2.5 drift window readout x 4 modules ~ 25 GB / event
 - Potentially > 400 PB / year for beam data alone
 - SN and proton decay searches need a continuous stream
 - Large background from radiological decays to be suppressed
- Need to manage data rate by triggering + zero-suppression
 - E.g., beam dataset becomes manageable with 500 keV cut
 - Need to find the sweet spot without sacrificing physics

Fermilab

The computing challenge

- The current state
 - Neither simulation nor reconstruction are "fast"
 - Many minutes per event often in seemingly "simple" events
 - Needed physics performance gains will likely make this worse
 - With potentially huge data volumes, this needs to be addressed
 - Memory footprint often exceeds 2 GB grid slot
 - Particularly bad for simulation, which can range 6 to 8 GB
 - Multi-threading seen as a possible solution not yet demonstrated
 - Missed opportunities for acceleration
 - Many of our algorithms lend themselves to vectorization
 - None of the code currently uses SIMD extensions that are available for use on most grid slots (TensorFlow and fftw excepted)

🚰 Fermilab

- Expect there to be continued demand to increase use of multi-threading on all scales to manage memory and throughput efficiently
 - Does not increase overall throughput
- Full exploitation of vectorization wherever possible
 - Make full use of SIMD capabilities on each platform
 - This will increase overall throughput
- Continue to optimize / innovate on the software algorithms
 - Many rewards to building smarter algorithms
 - Add equivalent beam as sensitivity increases
 - Add equivalent computing with resource efficiency gains

42 E. Snider I Sim/ reco challenges for LAr TPC experiments

🗲 Fermilab

- Expect demand for machine learning algorithms to grow
 - Image data ideally suited to CNN architectures from industry
 - Already see evidence of the great promise these algorithms offer
 - Expect to build on these successes
 - Expect increasing role in production reconstruction workflows
 - Conventional algorithms will remain an important component even in this new paradigm
 - Focus ML algorithms on those that are difficult to solve using conventional coding techniques

- Open question (1): will extensive use of machine learning push demand for GPU / other HPC resources?
 - Or conversely, will availability enable this growth
 - These algorithms are highly vectorizable
 - Have seen accelerations of ~1000x on GPU machines
 - Have seen factors of 10 on grid nodes with SIMD extensions
 - ...but was combined with multi-threading across cores
 - Can we do CNNs with a grid computing model in finite time? *Some* evidence the answer is yes.

My guess to the open question? Yes.

- Open question (2): will the availability of GPU / other HPC resources and the tools used for CNNs spur changes to accelerate conventional algorithms?
 - Some have speculated that many of our algorithms can be structure to obtain potentially huge gains in throughput (i.e., beyond fully availing ourselves of grid-level SIMD extensions)
 - Faster data turn-around = more physics.
 - Is it possible? Cost effective? It is worth thinking about.

Summary

- LAr TPC simulation and reconstruction poses a set of rich and complex problems
- Advanced computing technologies could play an increasingly important role in simulation and reconstruction solutions

 Still an open question whether HPC is needed
- DUNE is well advanced in algorithm development
 - A major contributor to and consumer from the community
- Based on existing experiments, fully expect LAr TPCs to deliver on their promised performance

BACKUP

47 E. Snider I Sim/ reco challenges for LAr TPC experiments

Joint WLCG & HSF Workshop 2018,

Example wire-cell 3D images

3D charge deposition models for pi-zero (left), neutrino plus cosmics (right)

Images from https://www.phy.bnl.gov/wire-cell/examples

• Picture of nue event – an important part of signal for DUNE

Reconstruction dashboard

Taken from DUNE CDR benchmarks

- For mass ordering and CP violation
 - Muon reconstruction efficiency > 99%
 - Electron reconstruction efficiency: >90%
- For nucleon decay search
 - Kaon reconstruction efficiency (up to 200 MeV) > 80%
 - Muon reco efficiency (muons around 150 MeV) >99%
 - Michel electron reconstruction efficiency > 99%

Promising results so far

😤 Fermilab

- For supernova neutrino search
 - Low energy (~10 MeV) electron neutrino reco efficiency > 90%

Good to go! Not yet demonstrated (that I've seen...)

The computing challenge

- Current strategy
 - Exploit vectorization wherever gains can be made
 - Accelerates computing on existing grid resources
 - Possibly transferrable to other platforms
 - Multi-thread to address the issue of growing memory demand
 - The major gains will be from multi-threading within an event
 - The harder thing to do well...
 - Continue to optimize / innovate on the software algorithms
 - Many rewards to building smarter algorithms
 - Add equivalent beam as sensitivity increases
 - Add equivalent computing with resource efficiency gains

Parallelization efforts

- Where are we?
 - LArSoft based on art event processing framework
 - Work to support multi-threading is nearly complete
 - Have started architectural changes in core LArSoft code to ensure thread-safety
 - Vectorization
 - Work on first demonstration targets is proceeding (see talk on Wednesday)
 - Demonstrated gains from vectorization in TensorFlow based CNN inference stages for DUNE track-shower classification

