

Future Developments in **Monte Carlo Event Generators**

J. Taylor Childers (ANL)

Generators are computationally intensive

- Annual usage in ATLAS is typically in the 10-15%, CMS typically in the range of 2-5%
- These values vary from year to year.
- A little troubled by the huge differences

Joint HSF/WLCG Workshop

Taylor Childers

2

March 2018

Reminder of what a generator is doing

Taylor Childers

Calculate hard scatter at fixed order

P. Richardson Herwig Talk

March 2018

Calculate initial and final parton shower

P. Richardson Herwig Talk

Calculate decays of heavy particles at fixed order

P. Richardson Herwig Talk

Reminder of what a generator is doing

Secondary hard processes

P. Richardson Herwig Talk

Reminder of what a generator is doing

H a d r o n i z e remaining particles

P. Richardson Herwig Talk

Challenges at Leading Order

- LO Generators (HERWIG/Pythia) are still widely used for LHC studies. Both now C++
- Also model hadronization, pile-up, minimum bias events, the underlying event, and jet structure and sub-structure.
- Top & W-boson mass uncertainties uncertainties in dominated by hadronization.
- Computationally LO Generators are light.

Taylor Childers

are still modeling

g COOO

March 2018

Challenges at Next-to-Leading Order

- NLO Generators (aMC@NLO/Sherpa) are also widely used for LHC studies.
- Computational intensity grows roughly factorially with number of particles and virtual loops. O(100k) diagrams at LO for W+5jets, O(100k) at NLO for W+3jets
- All possible diagrams must be represented in memory during event generation
- Virtual loops also drive compute intensity and in rare cases require quad precision due to large cancellations between individual diagrams.
- Currently pair hard scatter with LO showering, but NLO showering is being developed and increases computational intensity further.

Going Boldly Beyond NLO

- ATLAS W+jets production, leading jet pT shows we are already in the NNLO regime,
- Theoretical methods for calculating high multiplicity processes do not yet exist at NNLO with the current limit being 2 jets
- Theorist community and MC community continues to innovate and push the orders of perturbative QCD
- HL-LHC we will drive the need for more MC events at high order to support high precision studies across high-dimensional phase spaces.
- HPCs are becoming a focus of the community, as this does become a genuine computing problem: highdimensional phase-space require more MC integrand evaluations.

Joint HSF/WLCG Workshop Taylor Childers

development

Theory errors more than an order of magnitude larger than experimental ones

https://indico.cern.ch/event/557731/contributions/2268995/ attachments/1342762/2022840/Boughezal-HPC2016-Sep22.pdf

March 2018

- Clearly we are not writing generators, so what can we do about it?
- We are working with MC generator authors to increase compute performance on the architectures we use on the Grid and elsewhere.
- Optimization of NLO generators is ongoing.
- As you go to NLO and beyond the integration of cross sections dominates, AKA grid-pack generation
- Therefore much development is focusing on this step and how to parallelize it.

March 2018

Taylor Childers

Sherpa as an example of the problems we face.

Taylor Childers

March 2018

Sherpa as an example of the pro

Sherpa C++ gprof

Joint HSF/WLCG Workshop

Taylor Childers

March 2018

https://indico.cern.ch/event/557731/contributions/2268996/attachments/1341504/2020796/fnal_16-09.pdf

- Sherpa as an example of the problems we face.
- BUT with out-of-the-box parallelization ran integration (grid-pack gen) and generation at 128k parallel threads on Mira. (but very poorly)

Taylor Childers

March 2018

- Sherpa as an example of the problems we face.
- BUT with out-of-the-box parallelization ran integration (grid-pack gen) and generation at 128k parallel threads on Mira.
- MadGraph devs studying new methods for parallelization beyond the node level with a complete rewrite of their integration step

Taylor Childers

March 2018

https://indico.hep.anl.gov/indico/getFile.py/access?resId=0&materialId=slides&confId=1101

- SciDAC project in US DOE for R&D into new integration techniques
 - VEGAS has been the standard for 20+ years in importance sampling
 - What new MC techniques are out there?
 - Can you use Machine Learning to drive the phase-space exploration
- The goal is to produce a pluggable algorithm that is compatible with Sherpa MadGraph_aMC@NLO
- Will be useable on a desktop and an HPC

&

March 2018

Summary

- MC Event Generation will grow in computing requirements, driven by
 - increased luminosity
 - precision studies
 - searches for SM disagreements
- NLO and NNLO are computationally and memory intensive processes that grow factorially with multiplicity and order
- Existing frameworks are being upgraded to support more parallelism at larger scales
- New MC Integrator being developed that will use new methods from the Math community and enable faster grid-pack generation

Joint HSF/WLCG Workshop

Taylor Childers

$\int dx_1 dx_2 d\Phi_{\rm FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \,\hat{\sigma}_{ab\to X}(\hat{s},\mu_F,\mu_R)$

March 2018

