

Improving Jet Substructure Performance in ATLAS with Unified Tracking and Calorimeter Inputs
Connecting The Dots 2018

Roland Jansky, University of Geneva

21st March 2018

Jets at the Energy Frontier

Jet Substructure (1/2)

- Inclusive search for and measurement of H → bb in boosted regime.
- Searches for heavy (>1 TeV) resonances decaying to SM-bosons, or top-quarks.
- Precision measurements of SM in extreme phase-spaces.

Jet Substructure (2/2)

jet mass:
$$m^{\text{calo}} = \left| \left(\sum_{i \in I} E_i \right)^2 \right|$$

- Tracker granularity superior to calorimeter.
 - → Use tracker in reconstruction of jet substructure.

Motivation for TrackCaloClusters

- Track-CaloClusters (TCC) are our approach to track-assisting jets
 - Basic idea is simple: match tracks to clusters
 - As usual, the details can be a bit more complex
- Track-assisting has had great success in m_{TA} (ATLAS-CONF-2016-035), integrated into m_{comb}
 - Provides better mass resolution at high p_T
 - Particularly important when m/p_π«1
- However, TA assumes that the charge/neutral fraction is uniform
 - A large-R jet can have sizable local fluctuations
 - Fluctuations should be important for substructure variables
- TCC is a step further
 - Is aimed at accounting for these local fluctuations
 - Work at the level of individual tracks and clusters

ATL-PHYS-PUB-2017-015

$$m_{\text{calo}} = \sqrt{\left(\sum_{c \in C} E_c\right)^2 - \left(\sum_{c \in C} \vec{p}_c\right)^2}$$

$$m_{\text{trk}} = \sqrt{\left(\sum_{t \in T} E_t\right)^2 - \left(\sum_{t \in T} \vec{p_t}\right)^2}$$

$$m_{\mathrm{TA}} = \frac{p_{\mathrm{T}}^{\mathrm{calo}}}{p_{\mathrm{T}}^{\mathrm{trk}}} \times m_{\mathrm{trk}}$$

$$m_{\mathrm{comb}} = rac{\sigma_{\mathrm{calo}}^{-2}}{\sigma_{\mathrm{calo}}^{-2} + \sigma_{\mathrm{TA}}^{-2}} imes m_{\mathrm{calo}} + rac{\sigma_{\mathrm{calo}}^{-2}}{\sigma_{\mathrm{calo}}^{-2} + \sigma_{\mathrm{TA}}^{-2}} imes m_{\mathrm{TA}}$$

Motivation for TrackCaloClusters

- The next logical question is how this compares to particle flow
 - → They have very different use cases and intentions!
- Particle flow:
 - At $low p_T$: the tracker has a better energy resolution
 - Use it to improve the performance/pileup stability of low p_T jets
- Track-caloclusters:
 - At high p_T : the calorimeter has the better energy resolution
 - However, the tracker has the better spatial resolution
 - Use the tracker to better understand the structure of the jet
- The method of application is also very different
 - PFlow: subtract energies to avoid double-counting
 - TCC: use calorimeter energy scale and tracker spatial coordinates

Motivation for TrackCaloClusters

• At high \mathbf{p}_{T} :

- ATL-PHYS-PUB-2017-015
- Calorimeter provides good energy resolution, but poor granularity.
- Tracker provides good angular resolution, but degraded p_T resolution.
- Extrapolation uncertainty of tracks to calorimeter smaller than average angular width of topological-clusters in calorimeter.

Idea of TrackCaloClusters

• TrackCaloClusters (TCCs) are a way to profit from the complementary behaviour of the two detectors at high p_T.

Basic idea:

- Match <u>all</u> tracks to <u>all</u> clusters.
 - Tracks are extrapolated to the calorimeter with uncertainty σ_{track} .
 - Topo-clusters in calorimeter have angular dimension $\sigma_{cluster}$.
 - Check if $\sigma_{track} < \sigma_{cluster}$. If it is:
 - Match track to cluster if $\Delta R < \sqrt{\sigma_{track}^2 + \sigma_{cluster}^2}$.
- Build 4-vector from matched objects.
 - Use the spatial information from the tracker (η, ϕ) .
 - Use the energy measurements of the calorimeter (p_T, m) .

Tastes of TrackCaloClusters

Distinguish three interesting tastes:

- Combined: track from hard scatter vertex matched to topo-cluster.
- **Charged**: unmatched track from hard scatter vertex.
- Neutral: unmatched topo-cluster not matched to any (pile-up)

Energy Reshuffling (1/2)

- Calorimeter energy and mass reshuffled, using <u>all</u> relevant clusters <u>and</u> tracks via three p_T ratios.
- Each matched cluster *c* contributes to TCC τ
 proportionally to its p_T out of all
 matched clusters *k*.
- Cluster c matched to multiple tracks contributes to TCC τ proportional to track τ p_T compared to other matched tracks t.
- Contribution of each of these tracks weighted by fraction of energy cluster c represents compared to all clusters k matched to the track t.

$$f_{\tau}^{c} = \frac{p_{\mathrm{T}}^{c}}{p_{\mathrm{T}} \left[\sum_{k \in C_{\tau}} \mathbf{p}^{k} \right]}$$

$$\mathcal{F}_{c,t}^{\tau} = \frac{p_{\mathrm{T}}^{\tau}}{p_{\mathrm{T}} \left[\sum_{t \in T_c} \mathbf{p}^t f_t^c \right]}$$

$$f_t^c = \frac{p_{\mathrm{T}}^c}{p_{\mathrm{T}} \left[\sum_{k \in C_t} \mathbf{p}^k \right]}$$

Energy Reshuffling (2/2)

• Calorimeter energy and mass reshuffled, using <u>all</u> relevant clusters <u>and</u> tracks.

$$TCC_{\tau} = (p_{T}[\mathbf{M}_{\tau}], \eta^{\tau}, \phi^{\tau}, m[\mathbf{M}_{\tau}])$$

$$\mathbf{M}_{\tau} = \sum_{c \in C_{\tau}} \mathbf{p}^{c} f_{\tau}^{c} \mathcal{F}_{c,t}^{\tau} = \sum_{c \in C_{\tau}} \mathbf{p}^{c} \frac{p_{\mathrm{T}}^{c}}{p_{\mathrm{T}} \left[\sum_{k \in C_{\tau}} \mathbf{p}^{k} \right]}$$

Matching Efficiencies

- Algorithm matches all tracks in inner detector acceptance and $p_{\rm T} > 10$ GeV.
- <1% high p_T charged TCCs mostly mis-measured tracks (and few muons) → don't use in jet substructure reconstruction.
- Neutral TCCs rare at high jet p_T (due to collimation of neutral &

charged component of shower), but important at low jet p_{T} .

Jet Trimming

Build large-radius jets using ATLAS default algorithm:

anti- k_t with distance parameter R=1.0 & trimming applied ($f_{cut}=5\%$

and R_{sub} =0.2).

• Build large-radius jets using ATLAS default algorithm: anti- k_t with distance parameter R=1.0 & trimming applied (f_{cut} =5% and R_{sub} =0.2).

Build large-radius jets using ATLAS default algorithm: anti- k_t with distance parameter R=1.0 & trimming applied (f_{cut} =5% and R_{sub} =0.2).

• Build large-radius jets using ATLAS default algorithm: anti- k_t with distance parameter R=1.0 & trimming applied (f_{cut} =5% and R_{sub} =0.2).

Build large-radius jets using ATLAS default algorithm: anti- k_t with distance parameter R=1.0 & trimming applied (f_{cut} =5% and R_{sub} =0.2).

Mass Performance (1/2)

- Mass ratio ($\mathcal{R}^r = m^{\text{reco}}/m^{\text{true}}$) reflects accuracy and precision of reconstructed variable.
- LCTopo mass calibrated for these results, TCC mass not.

TCC jets provide similar performance across full studied p_T range.

Mass Performance (2/2)

- Measure quantitative mass resolution as inter-quantile range: $IQR^{r} = \frac{1}{2} \frac{Q_{75}(\mathcal{R}^{r}) Q_{25}(\mathcal{R}^{r})}{Q_{50}(\mathcal{R}^{r})}, \text{ where } Q_{x} \text{ is the } x\% \text{ quantile boundary.}$
- TCC jets give good improvement in resolution above 2000 GeV with respect to combined mass

D₂ Performance (1/2)

- Reminder: D_2 measure of how two-prong-like the jet is.
- Residual ($\mathcal{R}^d = D_2^{\text{reco}} D_2^{\text{true}}$) reflects accuracy and precision of reconstructed variable.
- At high p_T, calorimeter-only jet substructure breaks down.

TCC jets provide superior performance also in extreme topologies.

D₂ Performance (2/2)

- Measure quantitative D_2 resolution as inter-quantile range: $IQR^d = \frac{1}{2} [Q_{75}(\mathcal{R}^d) Q_{25}(\mathcal{R}^d)]$, where Q_x is the x% quantile boundary.
- TCC jets give factor of two improvement in resolution for 2000 GeV jets.
- Also superior for all other jet p_T.

Summary

- **Jet substructure crucial** for SM measurements (including H → bb) and searches for new physics with boosted objects.
- Calorimeter provides good energy resolution, but poor angular resolution at high jet p_T
 - → Use superior angular resolution of tracker as complementary information.
- Algorithms tries matching all tracks to all clusters, $\sim 100\%$ efficient for track $p_{\scriptscriptstyle T} > 10$ GeV
- Reshuffling calorimeter energy and mass, using all relevant clusters and tracks via three $p_{\scriptscriptstyle T}$ ratios = TrackCaloClusters.
- Provides excellent jet substructure resolution.
- Currently becoming new standard for large-radius jet reconstruction in several ATLAS analyses.
 - → First search results using TCCs expected by this summer.