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Jets at the Energy Frontier

- X something new?

L) e LHC: /s = 13 TeV.
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Jet Substructure (1/2)

Jet substructure crucial tool for:
* Inclusive search for and measurement of
H — bb in boosted regime.
Q * Searches for heavy (>1 TeV) resonances
decaying to SM-bosons, or top-quarks.
* Precision measurements of SM in extreme
phase-spaces.

?“ two-prong
structure (D,)

B
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jet mass: =~ Mm@ = (Z

* Tracker granularity superior to calorimeter.
— Use tracker in reconstruction of jet substructure.
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Track-CaloClusters (TCC) are our approach
to track-assisting jets \l 2 2
Mealo = ( Z EC) - ( Z ﬁc)
ceC ceC

- Basic idea is simple: match tracks to clusters

- As usual, the details can be a bit more complex

Track-assisting has had great success in
m.., (ATLAS-CONF-2016-035), integrated into m__

mb
- Provides better mass resolution at high p_

- Particularly important when m/p_«1

However, TA assumes that the charge/neutral
fraction is uniform

- A large-R jet can have sizable local fluctuations
- Fluctuations should be important for substructure variables

TCC is a step further

- Is aimed at accounting for these local fluctuations

- Work at the level of individual tracks and clusters
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http://inspirehep.net/record/1477266
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-015/

Motivation for TrackCaloClusters

The next logical question is how this compares to particle flow
— They have very different use cases and intentions!
Particle flow:

- Atlow p_: the tracker has a better energy resolution

- Use it to improve the performance/pileup stability of low p._ jets

Track-caloclusters:
- At high p_: the calorimeter has the better energy resolution

- However, the tracker has the better spatial resolution
- Use the tracker to better understand the structure of the jet

The method of application is also very different

- PFlow: subtract energies to avoid double-counting

- TCC: use calorimeter energy scale and tracker spatial coordinates
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https://arxiv.org/abs/1703.10485

Motivation for TrackCaloClusters

| ATL-PHYS-PUB-2017-015 |

« Athighp_:
* Calorimeter provides good energy resolution, but poor granularity.
e Tracker provides good angular resolution, but degraded p,. resolution.

* Extrapolation uncertainty of tracks to calorimeter smaller than average
angular width of topological-clusters in calorimeter.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-015/

Idea of TrackCaloClusters

* TrackCaloClusters (TCCs) are a way to profit from the
complementary behaviour of the two detectors at high p.

* Basicidea:
e Match all tracks to all clusters.
 Tracks are extrapolated to the calorimeter with uncertainty
Otrack-
Topo-clusters in calorimeter have angular dimension 6y ster-
Checkif 0¢rgck< Ocruster- If it is:

. - 2 2
Match track to cluster if AR < J Otrack T Octuster-

* Build 4-vector from matched objects.
* Use the spatial information from the tracker (1, ¢).
* Use the energy measurements of the calorimeter (p, m).
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Tastes of TrackCaloClusters

Distinguish three interesting tastes:
* Combined: track from hard scatter vertex matched to topo-cluster.
* Charged: unmatched track from hard scatter vertex.
* Neutral: unmatched topo-cluster - not matched to any (pile-up)
track. : -

pE T, ¢, mT = 0)

SOLENOID

TCC‘@ pfﬁ ntﬁ gi)’jﬁ,mt6 = 0)

INNER DETECTOR
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* Calorimeter energy and mass reshuffled, using all relevant clusters
and tracks via three p . ratios.

e Each matched cluster ¢
contributes to TCC 1
proportionally to its pr out of all
matched clusters k.

Cluster ¢ matched to multiple
tracks contributes to TCC 1
proportional to track T py
compared to other matched
tracks t.

Contribution of each of these
tracks weighted by fraction of -

energy cluster ¢ represents pT Z p
compared to all clusters k keC;
matched to the track t.
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Energy Reshuffling (2/2)

* (Calorimeter energy and mass
reshuffled, using all relevant
clusters and tracks.

TCC, = (pr[M; 1,7, ¢*, m[M.])
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Matching Efficiencies

* Algorithm matches all tracks in inner detector acceptance
and p_>10 GeV.

« <1% high p_charged TCCs mostly mis-measured tracks (and few

muons) — don't use 1n jet substructure reconstruction.
 Neutral TCCs rare at high jet p,. (due to collimation of neutral &

charged component of shower) but 1mPortant at low Jet ]oT
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“*And Then There Were Jets® <

ATLAS

EXPERIMENT

Jet Trimming

* Build large-radius jets using ATLAS default algorithm:
anti-k, with distance parameter R=1.0 & trimming applied (f .,,=5%
and Rsub=0'2)'

O
i

Initial jet O P'r/Pr < foue Trimmed jet
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https://arxiv.org/abs/0912.1342

* And Then There Were Jets®

* Build large-radius jets using ATLAS default algorithm:
anti-k, with distance parameter R=1.0 & trimming applied (f .,,=5%

and Rsub=0.2). ] ] o
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Build large-radius jets using ATLAS default algorithm:
anti-k, with distance parameter R=1.0 & trimming applied (f .,,=5%

and Rsub=0.2). ] ] o
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* Build large-radius jets using ATLAS default algorithm:
anti-k, with distance parameter R=1.0 & trimming applied (f .,,=5%
and Rsub=0'2)'
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* And Then There Were Jets®

* Build large-radius jets using ATLAS default algorithm:
anti-k, with distance parameter R=1.0 & trimming applied (f .,,=5%

and Rsub=0'2)'
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Mass Performance (1/2)

 Mass ratio (R" = m"®° /m'€) reflects accuracy and precision of
reconstructed variable.
* LCTopo mass calibrated for these results, TCC mass not.
TCC jets provide similar performance across full
studied py range.
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Mass Performance (2/2)

* Measure quantitative mass resolution as inter-quantile range:
1Q75(R")—Q25(R")
IQR" ==
Q 2 Qs0(R")

, where Q, is the x% quantile boundary.
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D, Performance (1/2)

Reminder: D, measure of how two-prong-like the jet is.

Residual (R% = D3®© — DI'U®) reflects accuracy and precision of

reconstructed variable.

At high p, calorimeter-only jet substructure breaks down.
TCC jets provide superior performance also in
extreme topologies.
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D, Performance (2/2)

* Measure quantitative D, resolution as inter-quantile range:
IQR? = % [Q75 (:Rd) — Q25(1Rd)], where Q, is the x% quantile
boundary.
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* TCC jets give
factor of two
improvement in
resolution for
2000 GeV jets.

* Also superior

for all other jet p. .
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Summary

Jet substructure crucial for SM measurements (including H — bb)
and searches for new physics with boosted objects.

Calorimeter provides good energy resolution, but poor angular
resolution at high jet p_

— Use superior angular resolution of tracker as
complementary information.
Algorithms tries matching all tracks to all clusters, ~100% efficient
for track p.. >10 GeV

Reshuffling calorimeter energy and mass, using all relevant clusters
and tracks via three p_ ratios = TrackCaloClusters.

Provides excellent jet substructure resolution.
Currently becoming new standard for large-radius jet reconstruction
in several ATLAS analyses.

— First search results using TCCs expected by this summer.
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